Solution to Problem 4) In the vicinity of the pole at $z=z_{n}=-n$, where $n=0,1,2, \cdots$, the reflection formula yields

$$
\Gamma(z) \Gamma(1-z)=\pi / \sin (\pi z) \quad \rightarrow \quad \Gamma(z)=\frac{\pi}{\Gamma(1-z) \sin (\pi z)}
$$

Expanding the singular term of the denominator in a Taylor series around $z=z_{n}$, we find

$$
\Gamma\left(z_{n}+\varepsilon e^{\mathrm{i} \theta}\right)=\frac{\pi}{\Gamma\left(1+n-\varepsilon e^{\mathrm{i} \theta}\right) \sin \left[\pi\left(-n+\varepsilon e^{\mathrm{i} \theta}\right)\right]} \cong \frac{\pi}{n!\times[\underbrace{\sin (-n \pi)}_{\text {zero }}+\pi \underbrace{\cos (-n \pi) \varepsilon e^{\mathrm{i} \theta} \theta}_{(-1)^{n}}]}=\frac{(-1)^{n}}{n!\left(\varepsilon e^{\left.\mathrm{i}^{i \theta}\right)}\right.} .
$$

Integration around a small circle of radius ε involves multiplication of the above function by $\mathrm{d} z=\mathrm{i} \varepsilon e^{\mathrm{i} \theta}$, followed by integration over θ from zero to 2π, which yields $2 \pi \mathrm{i}$ times $(-1)^{n} / n!$. The residue of $\Gamma(z)$ at the simple pole z_{n} is thus given by $(-1)^{n} / n!$.

