Solution to Problem 4) In the vicinity of the pole at $z = z_n = -n$, where $n = 0, 1, 2, \dots$, the reflection formula yields

$$\Gamma(z)\Gamma(1-z) = \pi/\sin(\pi z) \quad \rightarrow \quad \Gamma(z) = \frac{\pi}{\Gamma(1-z)\sin(\pi z)}.$$

Expanding the singular term of the denominator in a Taylor series around $z = z_n$, we find

$$\Gamma(z_n + \varepsilon e^{i\theta}) = \frac{\pi}{\Gamma(1 + n - \varepsilon e^{i\theta}) \sin[\pi(-n + \varepsilon e^{i\theta})]} \cong \frac{\pi}{n! \times [\underbrace{\sin(-n\pi) + \pi \cos(-n\pi)\varepsilon e^{i\theta}}_{\text{zero}}]} = \frac{(-1)^n}{n! (\varepsilon e^{i\theta})}.$$

Integration around a small circle of radius ε involves multiplication of the above function by $dz = i\varepsilon e^{i\theta}$, followed by integration over θ from zero to 2π , which yields $2\pi i$ times $(-1)^n/n!$. The residue of $\Gamma(z)$ at the simple pole z_n is thus given by $(-1)^n/n!$.