Solution to Problem 2) The general formulas for the forward and inverse Fourier transform of the function $f(x)$ are

$$
F(s)=\int_{-\infty}^{\infty} f(x) \exp (-\mathrm{i} 2 \pi s x) \mathrm{d} x \quad \rightarrow \quad f(x)=\int_{-\infty}^{\infty} F(s) \exp (\mathrm{i} 2 \pi s x) \mathrm{d} s
$$

From these equations, using straightforward differentiation, we obtain

$$
\begin{gathered}
f^{\prime \prime}(x)=\int_{-\infty}^{\infty}(\mathrm{i} 2 \pi s)^{2} F(s) \exp (\mathrm{i} 2 \pi s x) \mathrm{d} s \\
F^{\prime}(s)=-\mathrm{i} 2 \pi \int_{-\infty}^{\infty} x f(x) \exp (-\mathrm{i} 2 \pi s x) \mathrm{d} x \\
x f(x)=-(\mathrm{i} 2 \pi)^{-1} \int_{-\infty}^{\infty} F^{\prime}(s) \exp (\mathrm{i} 2 \pi s x) \mathrm{d} s
\end{gathered}
$$

Therefore, Airy's differential equation may be Fourier transformed as follows:

$$
f^{\prime \prime}(x)-x f(x)=(\mathrm{i} 2 \pi)^{-1} \int_{-\infty}^{\infty}\left[F^{\prime}(s)+(\mathrm{i} 2 \pi)^{3} s^{2} F(s)\right] \exp (\mathrm{i} 2 \pi s x) \mathrm{d} s=0
$$

From the above equation, we conclude that $F^{\prime}(s)+(i 2 \pi)^{3} s^{2} F(s)=0$, and, therefore,

$$
F(s)=c \exp \left[-1 / 3(\mathrm{i} 2 \pi)^{3} s^{3}\right]=c \exp \left[1 / 3 \mathrm{i}(2 \pi s)^{3}\right] . \quad \propto c \text { is the integration constant }
$$

The above transformation of Airy's $2^{\text {nd }}$ order differential equation has produced a $1^{\text {st }}$ order differential equation in $F(s)$. The resulting solution thus applies to $\operatorname{Ai}(x)$ only, since the Airy function of the $2^{\text {nd }} \operatorname{kind}, \operatorname{Bi}(x)$, is divergent and, therefore, does not have a Fourier transform. Considering that the value of the Fourier transform $F(s)$ of $f(x)$ at $s=0$ equals the area under $f(x)$, and that the area under $\mathrm{Ai}(x)$, namely, $\int_{-\infty}^{\infty} \mathrm{Ai}(x) \mathrm{d} x$, is equal to 1 , the integration constant c in the above expression of $F(s)$ must be set to 1 .

