Problem 20) Given that the partial differential could be written as $[f(x, t) \widehat{\boldsymbol{x}}+\hat{\boldsymbol{t}}] \cdot \boldsymbol{\nabla} f(x, t)=0$, the function $f(x, t)$ remains constant as one moves along the vector $\boldsymbol{v}=f(x, t) \hat{\boldsymbol{x}}+\hat{\boldsymbol{t}}$ within the $x t$-plane. The initial condition is specified along the x-axis at $t=0$, where a typical set of v vectors originating on the x-axis are shown in Fig.1(a). The function remains constant as one moves along individual \boldsymbol{v} vectors, and, consequently, the magnitude and direction of each \boldsymbol{v} vector remain intact as one moves to larger values of t, away from the x-axis. The process continues so long as the v vectors do not cross each other. Once a pair of these vectors cross, the solution breaks down. It is thus clear that, up until the breakdown, the solution may be written as an implicit function $f(x, t)=f_{0}(x-f t)$. Note that the same $f(x, t)$ appears on both sides of the equation. Depicted in Fig.1(b) is a typical initial distribution $f_{0}(x)$ as it evolves in time and approaches $f\left(x, t_{0}\right)$ at a later time $t=t_{0}$. The breakdown occurs if and when the function acquires a vertical tangent, that is, $\partial_{x} f(x, t) \rightarrow \infty$ for some value(s) of x.

Fig.1. (a) At $t=0$, the solution $f(x, t)$ of the PDE moves along the characteristic base curves in the directions specified by the local v vectors. (b) The initial profile $f_{0}(x)$ of the function $f(x, t)$ is deformed as time progresses.

Case i) $f_{0}(x)=-x$. Here, $f(x, t)=-[x-f(x, t) t]$, which is readily solved to yield the explicit solution $f(x, t)=x /(t-1)$. Clearly, the slope of the function starts at -1 at $t=0$, then increases with time until breakdown occurs at $t=1$.

Case ii) $f_{0}(x)=\sin (x)$. Here, $f(x, t)=\sin (x-f t)$. The slope of the function at point x at time t may thus be computed as follows:

$$
\partial_{x} f=\left(1-t \partial_{x} f\right) \cos (x-f t) \quad \rightarrow \quad \partial_{x} f(x, t)=\frac{\cos (x-f t)}{1+t \cos (x-f t)}
$$

The earliest time at which the slope of $f(x, t)$ becomes infinite is $t=1$, at locations where the function $\cos (x-f t)$ equals -1 , namely, $x= \pm \pi, \pm 3 \pi, \pm 5 \pi, \cdots$.

Case iii) $f_{0}(x)=1-x^{2}$. Here $f(x, t)=1-(x-f t)^{2}$. This quadratic equation in $f(x, t)$ is easily solved to yield

$$
f(x, t)=\frac{(2 x t-1) \pm \sqrt{1+4 t(t-x)}}{2 t^{2}} . \quad \leftarrow \text { use } \sqrt{1+\varepsilon} \cong 1+1 / 2 \varepsilon-1 / 8 \varepsilon^{2} .
$$

The above solution must approach $f_{0}(x)=1-x^{2}$ in the limit when $t \rightarrow 0^{+}$, which dictates the choice of + sign in the numerator. Subsequently, the local slope of the function is found to be

$$
\partial_{x} f=\frac{1}{t}\left[1-\frac{1}{\sqrt{1+4 t(t-x)}}\right] . \quad \leftarrow \text { use }(1+\varepsilon)^{-1 / 2} \cong 1-1 / 2 \varepsilon+3 / 8 \varepsilon^{2} .
$$

The apparent singularity of $\partial_{x} f(x, t)$ at $t=0$ disappears when the radical is properly expanded in a Taylor series. The true singularity, however, occurs when the radical itself approaches zero, that is, at $x=t+1 / 4 t^{-1}$. Figure 2(a) shows the initial stages of the evolution of $f_{0}(x)$, immediately after $t=0$. The plot of the function $x=t+1 / 4 t^{-1}$ in Fig.2(b) reveals that breakdown occurs at different times (before and up to $t=1 / 2$) in regions where $x \geq 1$.

Fig.2. (a) Evolution of $f(x, t)$ away from $f_{0}(x)$ during a short time interval following $t=0$. (b) Plot of the function $x=t+1 / 4 t^{-1}$, on which the slope of $f(x, t)$ goes to infinity. Only the lower-half of the plot is relevant, as it pertains to the earliest time at which breakdown occurs.

