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Problem 20) Given that the partial differential could be written as [𝑓𝑓(𝑥𝑥, 𝑡𝑡)𝒙𝒙� + 𝒕𝒕�] ∙ 𝜵𝜵𝑓𝑓(𝑥𝑥, 𝑡𝑡) = 0, 
the function 𝑓𝑓(𝑥𝑥, 𝑡𝑡) remains constant as one moves along the vector 𝒗𝒗 = 𝑓𝑓(𝑥𝑥, 𝑡𝑡)𝒙𝒙� + 𝒕𝒕� within the 
𝑥𝑥𝑥𝑥-plane. The initial condition is specified along the 𝑥𝑥-axis at 𝑡𝑡 = 0, where a typical set of 𝒗𝒗 
vectors originating on the 𝑥𝑥-axis are shown in Fig.1(a). The function remains constant as one 
moves along individual 𝒗𝒗 vectors, and, consequently, the magnitude and direction of each 𝒗𝒗 
vector remain intact as one moves to larger values of 𝑡𝑡, away from the 𝑥𝑥-axis. The process 
continues so long as the 𝒗𝒗 vectors do not cross each other. Once a pair of these vectors cross, the 
solution breaks down. It is thus clear that, up until the breakdown, the solution may be written as 
an implicit function 𝑓𝑓(𝑥𝑥, 𝑡𝑡) = 𝑓𝑓0(𝑥𝑥 − 𝑓𝑓𝑓𝑓). Note that the same 𝑓𝑓(𝑥𝑥, 𝑡𝑡) appears on both sides of the 
equation. Depicted in Fig.1(b) is a typical initial distribution 𝑓𝑓0(𝑥𝑥) as it evolves in time and 
approaches 𝑓𝑓(𝑥𝑥, 𝑡𝑡0) at a later time 𝑡𝑡 = 𝑡𝑡0. The breakdown occurs if and when the function 
acquires a vertical tangent, that is, 𝜕𝜕𝑥𝑥𝑓𝑓(𝑥𝑥, 𝑡𝑡) → ∞ for some value(s) of 𝑥𝑥. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. (a) At 𝑡𝑡 = 0, the solution 𝑓𝑓(𝑥𝑥, 𝑡𝑡) of the PDE moves along the characteristic base curves in the 
directions specified by the local 𝒗𝒗 vectors. (b) The initial profile 𝑓𝑓0(𝑥𝑥) of the function 𝑓𝑓(𝑥𝑥, 𝑡𝑡) is deformed 
as time progresses. 

Case i) 𝑓𝑓0(𝑥𝑥) = −𝑥𝑥. Here, 𝑓𝑓(𝑥𝑥, 𝑡𝑡) = −[𝑥𝑥 − 𝑓𝑓(𝑥𝑥, 𝑡𝑡)𝑡𝑡], which is readily solved to yield the 
explicit solution 𝑓𝑓(𝑥𝑥, 𝑡𝑡) = 𝑥𝑥 (𝑡𝑡 − 1)⁄ . Clearly, the slope of the function starts at −1 at 𝑡𝑡 = 0, 
then increases with time until breakdown occurs at 𝑡𝑡 = 1. 
 
Case ii) 𝑓𝑓0(𝑥𝑥) = sin(𝑥𝑥). Here, 𝑓𝑓(𝑥𝑥, 𝑡𝑡) = sin(𝑥𝑥 − 𝑓𝑓𝑓𝑓). The slope of the function at point 𝑥𝑥 at 
time 𝑡𝑡 may thus be computed as follows: 

 𝜕𝜕𝑥𝑥𝑓𝑓 = (1 − 𝑡𝑡𝜕𝜕𝑥𝑥𝑓𝑓) cos(𝑥𝑥 − 𝑓𝑓𝑓𝑓)      →        𝜕𝜕𝑥𝑥𝑓𝑓(𝑥𝑥, 𝑡𝑡) = cos(𝑥𝑥−𝑓𝑓𝑓𝑓)
1 + 𝑡𝑡 cos(𝑥𝑥−𝑓𝑓𝑓𝑓) . 

The earliest time at which the slope of 𝑓𝑓(𝑥𝑥, 𝑡𝑡) becomes infinite is 𝑡𝑡 = 1, at locations where 
the function cos(𝑥𝑥 − 𝑓𝑓𝑓𝑓) equals −1, namely, 𝑥𝑥 = ±𝜋𝜋, ±3𝜋𝜋, ±5𝜋𝜋,⋯. 
 
Case iii) 𝑓𝑓0(𝑥𝑥) = 1 − 𝑥𝑥2. Here 𝑓𝑓(𝑥𝑥, 𝑡𝑡) = 1 − (𝑥𝑥 − 𝑓𝑓𝑓𝑓)2. This quadratic equation in 𝑓𝑓(𝑥𝑥, 𝑡𝑡) is 
easily solved to yield 

 𝑓𝑓(𝑥𝑥, 𝑡𝑡) = (2𝑥𝑥𝑥𝑥−1) ± �1+4𝑡𝑡(𝑡𝑡−𝑥𝑥)
2𝑡𝑡2

 . 

The above solution must approach 𝑓𝑓0(𝑥𝑥) = 1 − 𝑥𝑥2 in the limit when 𝑡𝑡 → 0+, which dictates 
the choice of + sign in the numerator. Subsequently, the local slope of the function is found to be 

 𝜕𝜕𝑥𝑥𝑓𝑓 = 1
𝑡𝑡
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𝒗𝒗 = 𝑓𝑓0(𝑥𝑥)𝒙𝒙� + 𝒕𝒕� 
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use √1 + 𝜀𝜀 ≅ 1 + ½𝜀𝜀 −⅛𝜀𝜀2. 

use (1 + 𝜀𝜀)−½ ≅ 1 − ½𝜀𝜀 + ⅜𝜀𝜀2. 
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The apparent singularity of 𝜕𝜕𝑥𝑥𝑓𝑓(𝑥𝑥, 𝑡𝑡) at 𝑡𝑡 = 0 disappears when the radical is properly 
expanded in a Taylor series. The true singularity, however, occurs when the radical itself 
approaches zero, that is, at 𝑥𝑥 = 𝑡𝑡 + ¼𝑡𝑡−1. Figure 2(a) shows the initial stages of the evolution of 
𝑓𝑓0(𝑥𝑥), immediately after 𝑡𝑡 = 0. The plot of the function 𝑥𝑥 = 𝑡𝑡 + ¼𝑡𝑡−1 in Fig.2(b) reveals that 
breakdown occurs at different times (before and up to 𝑡𝑡 = ½) in regions where 𝑥𝑥 ≥ 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. (a) Evolution of 𝑓𝑓(𝑥𝑥, 𝑡𝑡) away from 𝑓𝑓0(𝑥𝑥) during a short time interval following 𝑡𝑡 = 0. (b) Plot of 
the function 𝑥𝑥 = 𝑡𝑡 + ¼𝑡𝑡−1, on which the slope of 𝑓𝑓(𝑥𝑥, 𝑡𝑡) goes to infinity. Only the lower-half of the plot 
is relevant, as it pertains to the earliest time at which breakdown occurs. 
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