Problem 19) The characteristic base curves parameterized by p satisfy the equations $\mathrm{d} x / \mathrm{d} p=1$ and $\mathrm{d} t / \mathrm{d} p=t$. Consequently, $\mathrm{d} x=\mathrm{d} t / t$, which, upon integration, yields $x=c+\ln t$, where c is the integration constant. Denoting the position in the $x t$-plane by $\boldsymbol{r}=x \widehat{\boldsymbol{x}}+t \hat{\boldsymbol{t}}$, the differential equation becomes $\mathrm{d} \boldsymbol{r} \cdot \boldsymbol{\nabla} f(x, t) / \mathrm{d} p=0$, which indicates that $f(x, t)$ remains constant along each and every characteristic base curve.

The initial condition specifies the value of the function at $t=1$, for which the x-coordinate of the generic base curve is c and, therefore, the initial value of the function at $(x, t)=(c, 1)$ equals $f_{1}(c)$. Since the function must remain constant along the base curve, we arrive at the following general solution (in the region $t>0$) of the differential equation:

$$
f(x, t)=f_{1}(x-\ln t)
$$

