Problem 13) The heat diffusion equation in 3-dimensional Cartesian space is written as

$$D(\partial_x^2 + \partial_y^2 + \partial_z^2)T(x, y, z, t) = \partial_t T(x, y, z, t).$$
(1)

In the steady state,  $\partial_t T = 0$ , and the separation of variables T(x, y, z) = f(x)g(y)h(z) yields

$$f''(x)g(y)h(z) + f(x)g''(y)h(z) + f(x)g(y)h''(z) = 0.$$
 (2)

Upon dividing Eq.(2) by f(x)g(y)h(z), we arrive at

$$\frac{f''(x)}{f(x)} + \frac{g''(y)}{g(y)} + \frac{h''(z)}{h(z)} = 0.$$
(3)

The individual terms of the above equation must be constants. Keeping in mind the boundary conditions, we equate the first term in Eq.(3) to  $-c_1^2$ , and the second term to  $-c_2^2$  (i.e., two arbitrary but negative constants). This yields  $f(x) = A \sin(c_1 x) + B \cos(c_1 x)$ . The boundary conditions along the x-axis then require that B = 0 and  $c_1 = m\pi/L_x$ , where  $m = 1, 2, 3, \cdots$  could be any positive integer. Similarly,  $g(y) = A' \sin(c_2 y) + B' \cos(c_2 y)$ , which, upon enforcing the boundary conditions along the y-direction, yields B' = 0 and  $c_2 = n\pi/L_y$ , where  $n = 1, 2, 3, \cdots$  is another arbitrary positive integer. (Note that the integers m and n are completely independent of each other.) The last term in Eq.(3) must now be equated to  $c_1^2 + c_2^2$ , which leads to  $h(z) = A'' \sinh(\sqrt{c_1^2 + c_2^2} z) + B'' \cosh(\sqrt{c_1^2 + c_2^2} z)$ . The boundary condition in the z = 0 plane requires that B'' be zero. The general solution to Eq.(1) is thus found to be

$$T(x, y, z) = T_0 + \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{mn} \sin(m\pi x/L_x) \sin(n\pi y/L_y) \sinh\left[\pi \sqrt{(m/L_x)^2 + (n/L_y)^2} z\right].$$
 (4)

The unknown coefficients  $A_{mn}$  must be obtained by matching the boundary condition at the top facet,  $z = L_z$ . We thus require that

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{mn} \sinh \left[ \pi \sqrt{(mL_z/L_x)^2 + (nL_z/L_y)^2} \right] \sin(m\pi x/L_x) \sin(n\pi y/L_y) = T_1(x,y).$$
(5)

Note that  $\sinh(\dots)$  appearing in Eq.(5) is just a constant. The boundary temperature  $T_1(x, y)$  should be expanded into a 2-dimensional Fourier sine series over the  $2L_x \times 2L_y$  rectangular region shown on the right. To this end, both sides of Eq.(5) are multiplied by  $\sin(m'\pi x/L_x) \sin(n'\pi y/L_y)$ , then integrated over the area of the rectangle. The only non-zero integral will then correspond to m' = m and n' = n, thus yielding the value of the  $A_{m'n'}$  coefficient.

