Problem 13) The heat diffusion equation in 3-dimensional Cartesian space is written as

$$
\begin{equation*}
D\left(\partial_{x}^{2}+\partial_{y}^{2}+\partial_{z}^{2}\right) T(x, y, z, t)=\partial_{t} T(x, y, z, t) \tag{1}
\end{equation*}
$$

In the steady state, $\partial_{t} T=0$, and the separation of variables $T(x, y, z)=f(x) g(y) h(z)$ yields

$$
\begin{equation*}
f^{\prime \prime}(x) g(y) h(z)+f(x) g^{\prime \prime}(y) h(z)+f(x) g(y) h^{\prime \prime}(z)=0 . \tag{2}
\end{equation*}
$$

Upon dividing Eq.(2) by $f(x) g(y) h(z)$, we arrive at

$$
\begin{equation*}
\frac{f^{\prime \prime}(x)}{f(x)}+\frac{g^{\prime \prime}(y)}{g(y)}+\frac{h^{\prime \prime}(z)}{h(z)}=0 . \tag{3}
\end{equation*}
$$

The individual terms of the above equation must be constants. Keeping in mind the boundary conditions, we equate the first term in Eq.(3) to $-c_{1}^{2}$, and the second term to $-c_{2}^{2}$ (i.e., two arbitrary but negative constants). This yields $f(x)=A \sin \left(c_{1} x\right)+B \cos \left(c_{1} x\right)$. The boundary conditions along the x-axis then require that $B=0$ and $c_{1}=m \pi / L_{x}$, where $m=$ $1,2,3, \cdots$ could be any positive integer. Similarly, $g(y)=A^{\prime} \sin \left(c_{2} y\right)+B^{\prime} \cos \left(c_{2} y\right)$, which, upon enforcing the boundary conditions along the y-direction, yields $B^{\prime}=0$ and $c_{2}=n \pi / L_{y}$, where $n=1,2,3, \cdots$ is another arbitrary positive integer. (Note that the integers m and n are completely independent of each other.) The last term in Eq.(3) must now be equated to $c_{1}^{2}+c_{2}^{2}$, which leads to $h(z)=A^{\prime \prime} \sinh \left(\sqrt{c_{1}^{2}+c_{2}^{2}} z\right)+B^{\prime \prime} \cosh \left(\sqrt{c_{1}^{2}+c_{2}^{2}} z\right)$. The boundary condition in the $z=0$ plane requires that $B^{\prime \prime}$ be zero. The general solution to Eq.(1) is thus found to be

$$
\begin{equation*}
T(x, y, z)=T_{0}+\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{m n} \sin \left(m \pi x / L_{x}\right) \sin \left(n \pi y / L_{y}\right) \sinh \left[\pi \sqrt{\left(m / L_{x}\right)^{2}+\left(n / L_{y}\right)^{2}} z\right] . \tag{4}
\end{equation*}
$$

The unknown coefficients $A_{m n}$ must be obtained by matching the boundary condition at the top facet, $z=L_{z}$. We thus require that

$$
\begin{equation*}
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{m n} \sinh \left[\pi \sqrt{\left(m L_{z} / L_{x}\right)^{2}+\left(n L_{z} / L_{y}\right)^{2}}\right] \sin \left(m \pi x / L_{x}\right) \sin \left(n \pi y / L_{y}\right)=T_{1}(x, y) . \tag{5}
\end{equation*}
$$

Note that $\sinh (\cdots)$ appearing in Eq.(5) is just a constant. The boundary temperature $T_{1}(x, y)$ should be expanded into a 2 -dimensional Fourier sine series over the $2 L_{x} \times 2 L_{y}$ rectangular region shown on the right. To this end, both sides of Eq.(5) are multiplied by $\sin \left(m^{\prime} \pi x / L_{x}\right) \sin \left(n^{\prime} \pi y / L_{y}\right)$, then integrated over the area of the rectangle. The only non-zero integral will then correspond to $m^{\prime}=m$ and $n^{\prime}=n$, thus yielding the value of the $A_{m^{\prime} n^{\prime}}$ coefficient.

