Problem 6) This problem is similar to that discussed in Sec.6, the only difference being that the radial solution $f(r)$ is now allowed to contain Bessel functions of the $2^{\text {nd }}$ kind in addition to those of the $1^{\text {st }}$ kind. We thus have

$$
\begin{equation*}
f(r)=J_{m}(c r / v)+\alpha Y_{m}(c r / v), \tag{1}
\end{equation*}
$$

where c is the separation constant, as before, whereas α is a new constant coefficient which specifies the relative contributions of the two Bessel functions in each vibrational mode, m. The boundary conditions now demand that $f\left(R_{1}\right)=0$ and also $f\left(R_{2}\right)=0$. Consequently,

$$
\begin{equation*}
\alpha=-\frac{J_{m}\left(c R_{1} / v\right)}{Y_{m}\left(c R_{1} / v\right)}=-\frac{J_{m}\left(c R_{2} / v\right)}{Y_{m}\left(c R_{2} / v\right)} . \tag{2}
\end{equation*}
$$

The separation constant c must ensure the equality of the two J_{m} / Y_{m} ratios appearing in the above equation. The acceptable values of c are, therefore, determined numerically, by searching for those values that satisfy the equality of these two ratios. There will be an infinite number of (discrete) values, $c_{m n}$, that will satisfy the above requirement for each and every mode, m. The corresponding values of α must then be designated $\alpha_{m n}$, and obtained from Eq.(2). The final solution for the annular membrane will, therefore, have the same general form as that given by Eq.(28), except for $J_{m}\left(r_{m n} r / R\right)$ being replaced by $J_{m}\left(c_{m n} r / v\right)+\alpha_{m n} Y_{m}\left(c_{m n} r / v\right)$. The oscillation frequency of the $m n^{\text {th }}$ mode will then be given by $\omega_{m n}=\sqrt{c_{m n}^{2}-(\gamma / 2)^{2}}$.

