Problem 19)

$$f(x) = x^{s} \sum_{k=0}^{\infty} A_{k} x^{k} \rightarrow f'(x) = \sum_{k=0}^{\infty} (k+s) A_{k} x^{k+s-1} \rightarrow f''(x) = \sum_{k=0}^{\infty} (k+s) (k+s-1) A_{k} x^{k+s-2}.$$

The differential equation may now be written

$$\begin{split} x^2 f''(x) + x f'(x) - (x^2 + p^2) f(x) \\ &= \sum_{k=0}^{\infty} (k+s)(k+s-1) A_k x^{k+s} + \sum_{k=0}^{\infty} (k+s) A_k x^{k+s} - (x^2 + p^2) \sum_{k=0}^{\infty} A_k x^{k+s} \\ &= \sum_{k=0}^{\infty} [(k+s)^2 - p^2] A_k x^{k+s} - \sum_{k=0}^{\infty} A_k x^{k+s+2} \\ &= (s^2 - p^2) A_0 x^s + [(s+1)^2 - p^2] A_1 x^{s+1} + \sum_{k=2}^{\infty} [(k+s)^2 - p^2] A_k x^{k+s} - \sum_{k=2}^{\infty} A_{k-2} x^{k+s} \\ &= (s^2 - p^2) A_0 x^s + [(s+1)^2 - p^2] A_1 x^{s+1} + \sum_{k=2}^{\infty} [(k+s-p)(k+s+p) A_k - A_{k-2}] x^{k+s} = 0. \end{split}$$

Indicial equations:

i)
$$s^2 - p^2 = 0 \rightarrow s_1 = p$$
, $s_2 = -p$, $A_0 = \text{arbitrary}$, $A_1 = 0$.

ii)
$$(s+1)^2 - p^2 = 0 \rightarrow s_3 = p-1$$
, $s_4 = -p-1$, $A_0 = 0$, $A_1 = \text{arbitrary}$

Recursion relation:
$$(k+s-p)(k+s+p)A_k - A_{k-2} = 0 \rightarrow A_k = \frac{A_{k-2}}{(k+s-p)(k+s+p)}$$
.

Next we must determine the coefficients A_k for each of the four values of s.

a)
$$s_1 = p$$
: $A_1 = A_3 = A_5 = \dots = 0$; $A_2 = \frac{A_0}{2(2+2p)} = \frac{A_0}{2^2(p+1)}$; $A_4 = \frac{A_2}{4(4+2p)} = \frac{A_0}{2^4 \cdot 1 \cdot 2 \cdot (p+1)(p+2)}$; $A_6 = \frac{A_4}{6(6+2p)} = \frac{A_0}{2^6 \cdot 1 \cdot 2 \cdot 3 \cdot (p+1)(p+2)(p+3)}$; \vdots $A_{2k} = \frac{p! A_0}{2^{2k} k! (p+k)!}$.

Therefore,
$$f(x) = x^p \sum_{k=0}^{\infty} \frac{p! A_0 x^{2k}}{2^{2k} k! (p+k)!}$$
 \rightarrow $f(x) = 2^p p! A_0 \sum_{k=0}^{\infty} \frac{(x/2)^{2k+p}}{k! (p+k)!}$

The coefficient $2^p p! A_0$, being a constant (i.e., independent of x and k), may be dropped. The remaining f(x) is generally written as $I_p(x)$ and referred to as the modified Bessel function of the first kind, order p.

b)
$$s_{2} = -p: \quad A_{1} = A_{3} = A_{5} = \dots = 0; \quad A_{2} = \frac{A_{0}}{2(2-2p)} = \frac{A_{0}}{2^{2}(1-p)};$$

$$A_{4} = \frac{A_{2}}{4(4-2p)} = \frac{A_{0}}{2^{4} \cdot 1 \cdot 2 \cdot (1-p)(2-p)};$$

$$A_{6} = \frac{A_{4}}{6(6-2p)} = \frac{A_{0}}{2^{6} \cdot 1 \cdot 2 \cdot 3 \cdot (1-p)(2-p)(3-p)};$$

$$\vdots$$

$$A_{2k} = \frac{(-p)! A_{0}}{2^{2k} k! (k-p)!}$$

$$When x is not a positive integer, x! is defined in terms of the Gamma function, namely, $x! = \Gamma(x+1)$.

Therefore, $f(x) = x^{-p} \sum_{k=0}^{\infty} \frac{(-p)! A_{0} x^{2k}}{2^{2k} k! (k-p)!}$

$$\rightarrow f(x) = 2^{-p} (-p)! A_{0} \sum_{k=0}^{\infty} \frac{(x/2)^{2k-p}}{k! (k-p)!}.$$$$

The coefficient $2^{-p}(-p)!A_0$, being a constant (i.e., independent of x and k), may be dropped. The remaining f(x) is written as $I_{-p}(x)$ and referred to as the *modified Bessel function of the first kind, order* -p. When p is non-integer, $I_p(x)$ and $I_{-p}(x)$ are the two independent solutions of the modified Bessel equation.

If p happens to be an integer, the solution obtained above for $s_2 = -p$ must be re-examined, as A_{2k} goes to infinity for $k \ge p$. A careful examination of the recursion relation $A_{k-2} = k(k-2p)A_k$ reveals that the first few coefficients A_0 , A_2 , A_4 ,..., $A_{2(p-1)}$ must be zero in this case. (Start with k=2p and compute the coefficients A_{k-2} , A_{k-4} ,..., A_0 in declining order.) The remaining terms, however, follow the same pattern as the previous case of $s_1 = p$, in which case, the solution associated with s_2 becomes the same as that obtained for s_1 , namely, $I_p(x)$. Thus, for integer p, the method of Frobenius yields only one of the two independent solutions of the modified Bessel equation. A more complex technique must be used to derive the second solution.

c, d) The solutions for $s_3=p-1$ and $s_4=-p-1$ turn out to be the same as those obtained for s_1 and s_2 , respectively. We will not go into the details, as the procedure is essentially the same as before.