Problem 4) a) The current flowing through the circuit is related to the voltage across the capacitor via $i(t)=C \dot{v}_{c}(t)$. According to Kirchhoff's voltage law, the sum of the resistor voltage $R i(t)$ and the capacitor voltage $v_{c}(t)$ must equal the applied voltage $v(t)$. Therefore,

$$
\begin{equation*}
R C \dot{v}_{c}(t)+v_{c}(t)=v(t) \quad \rightarrow \quad \tau(t) \dot{v}_{c}(t)+v_{c}(t)=v(t) . \tag{1}
\end{equation*}
$$

b) The above differential equation is similar to the $1^{\text {st }}$ order ODE that has been analyzed in Sec.2. Using Eq.(3), Sec.2, we find

$$
\begin{align*}
g(t)=[1 / \tau(t)] \exp \left[\int \mathrm{d} t / \tau(t)\right] & =\frac{1}{\tau_{0}[1+\alpha \cos (\omega t)]} \exp \left(\frac{1}{\tau_{0}} \int_{-\infty}^{t} \frac{\mathrm{~d} t^{\prime}}{1+\alpha \cos \left(\omega t^{\prime}\right)}\right) \\
& =\frac{1}{\tau_{0}[1+\alpha \cos (\omega t)]} \exp \left(\frac{1}{\tau_{0} \omega} \int_{-\infty}^{\omega t} \frac{\mathrm{~d} \theta}{1+\alpha \cos \theta}\right) . \tag{2}
\end{align*}
$$

The integral appearing in the exponent on the right-hand side of Eq.(2) was evaluated in Chapter 3, Section 2, Example 6. We thus have

$$
\begin{equation*}
g(t)=\frac{1}{\tau_{0}[1+\alpha \cos (\omega t)]} \exp \left(\frac{2 \tan ^{-1}[\sqrt{(1-\alpha) /(1+\alpha)} \tan (\omega t / 2)]}{\sqrt{1-\alpha^{2}} \tau_{0} \omega}\right) \tag{3}
\end{equation*}
$$

When $\alpha=0$, Eq.(3) reduces to $g(t)=\left(1 / \tau_{0}\right) \exp \left(t / \tau_{0}\right)$, in agreement with the results obtained in Example 3, Sec.2. When $0<|\alpha|<1$, the coefficient of $\tan (\omega t / 2)$ will be some positive number other than 1 . Here one must be careful, because the arctangent function has $\pm \pi$ discontinuities whenever ωt passes through an odd-multiple of π. Nevertheless, once the angles have been unwrapped, the exponent of $g(t)$ becomes a periodically wobbling function of t, such as that shown on the right. The exponent rises continually with time as $t /\left(\sqrt{1-\alpha^{2}} \tau_{0}\right)$, albeit with a superposed periodic wobble whose frequency is ω and whose amplitude depends on α, being greater for larger values of $|\alpha|$. The subsequent division of the exponential function by $\tau_{0}[1+\alpha \cos (\omega t)]$, as required by Eq.(3), further modulates the exponential function by multiplying it with a periodic function of time whose frequency also
 happens to be ω.

Substitution of the function $g(t)$ given by Eq.(3) above into Eq.(4), Sec.2, finally yields

$$
\begin{equation*}
v_{c}(t)=\int_{-\infty}^{t} \exp \left(-\frac{2 \tan ^{-1}[\sqrt{(1-\alpha) /(1+\alpha)} \tan (\omega t / 2)]}{\sqrt{1-\alpha^{2}} \tau_{0} \omega}\right) g\left(t^{\prime}\right) v\left(t^{\prime}\right) \mathrm{d} t^{\prime} . \tag{4}
\end{equation*}
$$

Aside from wiggles of frequency ω that the integrand in the above equation has inherited from the oscillations of the circuit parameters, the final result in Eq.(4) is qualitatively similar to that for an $R C$ circuit having a time-invariant $\tau=R C$, as given by Eq.(9) in Example 3, Sec. 2.

