Problem 8) a) By definition, the integral of $f^{\prime}(z)$ along a given path is the sum of terms such as $\left[f\left(z_{n}+\Delta z_{n}\right)-f\left(z_{n}\right)\right] / \Delta z_{n}$ multiplied by Δz_{n}, in the limit when all Δz_{n} approach zero. (It is being assumed here that the continuous path is broken into infinitesimal segments at successive points $z_{1}=z_{\mathrm{a}}, z_{2}, z_{3}, \cdots, z_{n}, \cdots, z_{N}=z_{\mathrm{b}}$.) Upon adding up the above terms, all the intermediate $f\left(z_{n}\right)$ drop out, leaving behind $-f\left(z_{\mathrm{a}}\right)$ from the first term, and $f\left(z_{\mathrm{b}}\right)$ from the last term. The final result of integration, therefore, is $\int_{z_{\mathrm{a}}}^{z_{\mathrm{b}}} f^{\prime}(z) \mathrm{d} z=f\left(z_{\mathrm{b}}\right)-f\left(z_{\mathrm{a}}\right)$. If the path happens to be closed, then $z_{\mathrm{a}}=z_{\mathrm{b}}$ and, consequently, $\int_{z_{\mathrm{a}}}^{z_{\mathrm{b}}} f^{\prime}(z) \mathrm{d} z=0$.
b) Since $[f(z) g(z)]^{\prime}=f^{\prime}(z) g(z)+f(z) g^{\prime}(z)$, integrating both sides of this equation yields

$$
\int_{z_{\mathrm{a}}}^{z_{\mathrm{b}}}[f(z) g(z)]^{\prime} \mathrm{d} z=f\left(z_{b}\right) g\left(z_{b}\right)-f\left(z_{a}\right) g\left(z_{a}\right)=\int_{z_{\mathrm{a}}}^{z_{\mathrm{b}}} f^{\prime}(z) g(z) \mathrm{d} z+\int_{z_{\mathrm{a}}}^{z_{\mathrm{b}}} f(z) g^{\prime}(z) \mathrm{d} z
$$

The above identity leads immediately to the standard formula for integration by parts, namely,

$$
\int_{z_{\mathrm{a}}}^{z_{\mathrm{b}}} f(z) g^{\prime}(z) \mathrm{d} z=\left[f\left(z_{b}\right) g\left(z_{b}\right)-f\left(z_{a}\right) g\left(z_{a}\right)\right]-\int_{z_{\mathrm{a}}}^{z_{\mathrm{b}}} f^{\prime}(z) g(z) \mathrm{d} z .
$$

In the special case of a closed loop, where $z_{\mathrm{a}}=z_{\mathrm{b}}$, we will have

$$
\int_{z_{\mathrm{a}}}^{z_{\mathrm{b}}} f(z) g^{\prime}(z) \mathrm{d} z=-\int_{z_{\mathrm{a}}}^{z_{\mathrm{b}}} f^{\prime}(z) g(z) \mathrm{d} z .
$$

c) The function $f^{\prime}(z) g(z)=a \exp (a z) /\left(z-z_{0}\right)$ is analytic everywhere except at the first-order pole $z=z_{0}$. The integral of $f^{\prime}(z) g(z)$ around a closed loop is therefore zero, unless the loop happens to enclose the pole at $z=z_{0}$, in which case the loop integral (in the counterclockwise direction) will be $\mathrm{i} 2 \pi a \exp \left(a z_{0}\right)$. In contrast, the function $f(z) g^{\prime}(z)=-\exp (a z) /\left(z-z_{0}\right)^{2}$ is analytic everywhere except at the second-order pole $z=z_{0}$, where the corresponding residue is $-a \exp \left(a z_{0}\right)$. Once again, the loop integral is seen to be zero unless the loop encloses the pole at $z=z_{0}$, in which case the (counterclockwise) integral of $f(z) g^{\prime}(z)$ is $-\mathrm{i} 2 \pi a \exp \left(a z_{0}\right)$. This integral, of course, is equal in magnitude and opposite in sign to the loop integral of $f^{\prime}(z) g(z)$.

