Solutions

Problem 8) a) By definition, the integral of f'(z) along a given path is the sum of terms such as $[f(z_n + \Delta z_n) - f(z_n)]/\Delta z_n$ multiplied by Δz_n , in the limit when all Δz_n approach zero. (It is being assumed here that the continuous path is broken into infinitesimal segments at successive points $z_1 = z_a, z_2, z_3, \dots, z_n, \dots, z_N = z_b$.) Upon adding up the above terms, all the intermediate $f(z_n)$ drop out, leaving behind $-f(z_a)$ from the first term, and $f(z_b)$ from the last term. The final result of integration, therefore, is $\int_{z_a}^{z_b} f'(z)dz = f(z_b) - f(z_a)$. If the path happens to be closed, then $z_a = z_b$ and, consequently, $\int_{z_a}^{z_b} f'(z)dz = 0$.

b) Since [f(z)g(z)]' = f'(z)g(z) + f(z)g'(z), integrating both sides of this equation yields

$$\int_{z_a}^{z_b} [f(z)g(z)]' dz = f(z_b)g(z_b) - f(z_a)g(z_a) = \int_{z_a}^{z_b} f'(z)g(z) dz + \int_{z_a}^{z_b} f(z)g'(z) dz.$$

The above identity leads immediately to the standard formula for integration by parts, namely,

$$\int_{z_{a}}^{z_{b}} f(z)g'(z)dz = [f(z_{b})g(z_{b}) - f(z_{a})g(z_{a})] - \int_{z_{a}}^{z_{b}} f'(z)g(z)dz.$$

In the special case of a closed loop, where $z_a = z_b$, we will have

$$\int_{z_a}^{z_b} f(z)g'(z)\mathrm{d}z = -\int_{z_a}^{z_b} f'(z)g(z)\mathrm{d}z.$$

c) The function $f'(z)g(z) = a \exp(az)/(z - z_0)$ is analytic everywhere except at the first-order pole $z = z_0$. The integral of f'(z)g(z) around a closed loop is therefore zero, unless the loop happens to enclose the pole at $z = z_0$, in which case the loop integral (in the counterclockwise direction) will be $i2\pi a \exp(az_0)$. In contrast, the function $f(z)g'(z) = -\exp(az)/(z - z_0)^2$ is analytic everywhere except at the second-order pole $z = z_0$, where the corresponding residue is $-a \exp(az_0)$. Once again, the loop integral is seen to be zero unless the loop encloses the pole at $z = z_0$, in which case the (counterclockwise) integral of f(z)g'(z) is $-i2\pi a \exp(az_0)$. This integral, of course, is equal in magnitude and opposite in sign to the loop integral of f'(z)g(z).