Problem 4) For $N=0$, the polynomial reduces to $f(z)=a_{0}$, which is a constant function of z. The derivative of $f(z)$ is then zero everywhere in the complex z-plane, making $f(z)$ analytic everywhere. Suppose now that all $N^{\text {th }}$ degree polynomials are differentiable throughout the complex plane. We must then prove that all polynomials of degree $N+1$ are similarly differentiable across the complex plane. To this end, consider $f(z)=\sum_{n=0}^{N+1} a_{n} z^{n}$. The derivative of $f(z)$ at an arbitrary point z is given by

$$
\begin{aligned}
f^{\prime}(z) & =\lim _{\Delta z \rightarrow 0}\left[\frac{f(z+\Delta z)-f(z)}{\Delta z}\right]=\lim _{\Delta z \rightarrow 0}\left[\frac{\sum_{n=0}^{N+1} a_{n}(z+\Delta z)^{n}-\sum_{n=0}^{N+1} a_{n} z^{n}}{\Delta z}\right] \\
& =a_{N+1} \lim _{\Delta z \rightarrow 0}\left[\frac{(z+\Delta z)^{N+1}-z^{N+1}}{\Delta z}\right]+\lim _{\Delta z \rightarrow 0}\left[\frac{\sum_{n=0}^{N} a_{n}(z+\Delta z)^{n}-\sum_{n=0}^{N} a_{n} z^{n}}{\Delta z}\right] .
\end{aligned}
$$

In the above expression, the first term is the constant a_{N+1} times the derivative of z^{N+1}, which, according to Problem 3, is given by $a_{N+1}(N+1) z^{N}$. The second term is the derivative of an $N^{\text {th }}$ degree polynomial, which, by assumption, exists. Consequently, the sum of the two terms comprising $f^{\prime}(z)$ exists everywhere in the complex plane, proving that all polynomials of degree $N+1$ are analytic across the entire complex plane.

