Problem 15) Pick a point (x, y) on the ellipse. The area to be maximized is $f(x, y)=4 x y$, while the constraint is specified as $g(x, y)=(x / a)^{2}+(y / b)^{2}=1$. We will have

$$
F(x, y)=f(x, y)+\lambda g(x, y)=4 x y+\lambda(x / a)^{2}+\lambda(y / b)^{2} .
$$

Setting the partial derivatives of $F(x, y)$ with respect to x
 and y equal to zero, we find

$$
\left\{\begin{array}{l}
\frac{\partial F}{\partial x}=4 y+\frac{2 \lambda x}{a^{2}}=0 \\
\frac{\partial F}{\partial y}=4 x+\frac{2 \lambda y}{b^{2}}=0
\end{array} \quad \rightarrow \quad\left(\begin{array}{cc}
\lambda / a^{2} & 2 \\
2 & \lambda / b^{2}
\end{array}\right)\binom{x}{y}=\binom{0}{0} .\right.
$$

The above equation will have a non-trivial solution only if the determinant of the 2×2 coefficient matrix vanishes, that is,

$$
\left|\begin{array}{cc}
\lambda / a^{2} & 2 \\
2 & \lambda / b^{2}
\end{array}\right|=\left(\frac{\lambda}{a b}\right)^{2}-4=0 \quad \rightarrow \quad \lambda= \pm 2 a b .
$$

With this value of λ, the solution of the pair of equations $\partial F / \partial x=0, \partial F / \partial y=0$ will be $y=\mp(b / a) x$. Putting this solution into the constraint equation now yields

$$
g(x, y)=(x / a)^{2}+(y / b)^{2}=(x / a)^{2}+(b / a)^{2}(x / b)^{2}=2(x / a)^{2}=1 \quad \rightarrow \quad x= \pm a / \sqrt{2}
$$

Consequently, $y= \pm b / \sqrt{2}$. The solutions we have arrived at specify the four corners of the desired rectangle. The area of the rectangle is then equal to $4 x y=2 a b$. The ratio of the area of the maximal rectangle to that of the ellipse is thus $2 a b /(\pi a b)=2 / \pi$.

