Problem 10) The composite function is $A\left(r_{1}, r_{2}, \cdots, r_{N}\right)+\lambda P\left(r_{1}, r_{2}, \cdots, r_{N}\right)$. Setting the partial derivative of the composite function with respect to r_{n} equal to zero, we will have

$$
\partial_{r_{n}} A+\lambda \partial_{r_{n}} P=r_{n} \Delta \theta+\lambda \Delta \theta=0 \quad \rightarrow \quad r_{n}=-\lambda
$$

Next, we enforce the constraint $P=P_{0}$. We find $P=\sum r_{n} \Delta \theta=-\lambda \sum \Delta \theta=-2 \pi \lambda=P_{0}$, which yields $\lambda=-P_{0} / 2 \pi$. We will then have $r_{1}=r_{2}=\cdots=r_{N}=-\lambda=P_{0} / 2 \pi$. The curve which encloses the maximum area A for a given perimeter $P=P_{0}$ is a circle of radius $r=P_{0} / 2 \pi$.

