Problem 6) The volume of the cylinder, $V(r,h) = \pi r^2 h$, is the function that needs to be maximized. The constraint is $g(r,h) = r^2 + (h/2)^2 = R^2$, which is readily obtained by inspecting the diagram that shows the cylinder encompassed by the sphere. We proceed to optimize the function $V + \lambda g = \pi r^2 h + \lambda [r^2 + (h/2)^2]$ by setting its partial derivatives with respect to r and h equal to zero. We find

$$\partial (V + \lambda g)/\partial r = 2\pi r h + 2\lambda r = 0 \rightarrow h_0 = -\lambda/\pi.$$

 $\partial (V + \lambda g)/\partial h = \pi r^2 + \frac{1}{2}\lambda h = 0 \rightarrow r_0^2 = \frac{\lambda^2}{2\pi^2}.$

Substitution into the constraint equation, namely, $g(r, h) = R^2$, now yields

$$g(r_0, h_0) = \lambda^2/(2\pi^2) + \lambda^2/(4\pi^2) = \frac{3}{4}(\lambda/\pi)^2 = R^2$$
 $\rightarrow \lambda_0 = \pm \frac{2\pi}{\sqrt{3}}R$.

With the value of λ_0 at hand, we substitute in the expressions for r_0 and h_0 to determine the optimum values of the cylinder's radius and height. The positive value of λ_0 yields a negative value for h_0 , which is unacceptable. Therefore,

$$h_0 = 2R/\sqrt{3}$$
, $r_0 = \sqrt{2/3} R$, $V_{\text{max}} = \frac{4\pi R^3}{3\sqrt{3}}$

The maximum volume of the cylinder is thus seen to be equal to the volume of the sphere divided by $\sqrt{3}$.