Problem 5) The function to be minimized is S(x, y, z) = 2xz + 2yz + xy. The constraint is $V(x, y, z) = xyz = V_0$. We must thus form the function $S + \lambda V$, where λ is the Lagrange multiplier, then set its partial derivatives with respect to x, y, and z equal to zero. We will have

$$\partial(S + \lambda V) / \partial x = 2z + y + \lambda yz = 0 \quad \Rightarrow \quad y = -2z / (1 + \lambda z),$$

$$\partial(S + \lambda V) / \partial y = 2z + x + \lambda xz = 0 \quad \Rightarrow \quad x = -2z / (1 + \lambda z),$$

$$\partial(S + \lambda V) / \partial z = 2x + 2y + \lambda xy = 0.$$

The first two equations yield x = y, which, placed into the third equation, yields $4x + \lambda x^2 = 0$. Aside from the trivial solution, x = 0, the only solution to this equation is $x = -4/\lambda$. We already know that x = y; therefore, $y = -4/\lambda$. Substituting one of these solutions into the first or second of the above equations, we find $-4/\lambda = -2z/(1+\lambda z)$ $\rightarrow z = -2/\lambda$.

Having found the optimum values of x, y, and z in terms of λ , we now use the constraint $V = V_0$ to determine the value of λ , as follows:

$$V(x, y, z) = xyx = -32 / \lambda^3 = V_0 \rightarrow \lambda = -2^{5/3} V_0^{-1/3}$$
.

Consequently, $x_0 = y_0 = -4/\lambda = (2V_0)^{1/3}$ and $z_0 = -2/\lambda = (V_0/4)^{1/3}$. It is easy to verify that $V(x_0, y_0, z_0) = V_0$ and $S(x_0, y_0, z_0) = 2x_0z_0 + 2y_0z_0 + x_0y_0 = 3(2V_0)^{2/3}$. Any other choice of x, y, and z, which would yield the same volume V_0 , will inevitably result in a larger surface area.