Problem 3) Let the tins points be $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. The distance which needs to he maximized (or minimized) is thus give by

$$
f\left(x_{1}, y_{1}, x_{2}, y_{2}\right)=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}
$$

The first point must bee on the straight hive. Therefore, the first Constraint is: $g\left(x_{1}, y_{1}, x_{2}, y_{2}\right)=a x_{1}+b y_{1}=c$.

The second point must he on the circle. Therefor, the second Constriant is $h\left(x_{1}, x_{1}, x_{2}, y_{2}\right)=x_{2}^{2}+y_{2}^{2}=1$.
We now use the Lagrange multipliers λ_{1} and λ_{2} to form the following function: $f+\lambda_{1} g+\lambda_{2} h$. Setting the partial derivatives of this function with respect to $x_{1}, y_{1}, x_{2}, y_{2}, \frac{(e q u a l}{, w_{e}}$,l el find:

$$
\begin{align*}
& \frac{\partial}{\partial x_{1}}\left(f+\lambda_{1} g+\lambda_{2} h\right)=2\left(x_{1}-x_{2}\right)+\lambda_{1} a \neq 0 \tag{1}\\
& \frac{\partial}{\partial y_{1}}\left(f+\lambda_{1} g+\lambda_{2} h\right)=2\left(y_{1}-y_{2}\right)+\lambda_{1} b=0 \tag{2}\\
& \frac{\partial}{\partial x_{2}}\left(f+\lambda_{1} g+\lambda_{2} h\right)=-2\left(x_{1}-x_{2}\right)+2 \lambda_{2} x_{2}=0 \tag{3}\\
& \frac{\partial}{\partial y_{2}}\left(f+\lambda_{1} g+\lambda_{2} h\right)=-2\left(y_{1}-y_{2}\right)+2 \lambda_{2} y_{2}=0 \tag{4}
\end{align*}
$$

Equation (1) and (3) may now be solved to yield x_{1} ad x_{2} in term of λ_{1} add λ_{2}. Similarly, equations (2) and (4) yield the values of y_{1} ad y_{2}.

$$
x_{2}=-\frac{\lambda_{1} a}{2 \lambda_{2}}, x_{1}=-\frac{\lambda_{1} a}{2 \lambda_{2}}-\frac{\lambda_{1} a}{2}, y_{2}=-\frac{\lambda_{1} b}{2 \lambda_{2}}, y_{1}=-\frac{\lambda_{1} b}{2 \lambda_{2}}-\frac{\lambda_{1} b}{2} .
$$

Next, we find λ_{1} ad λ_{2} by Satisfying the Constraint:

$$
a x_{1}+b y_{1}=c \Rightarrow-\frac{1}{2} \lambda_{1} a^{2}\left(\frac{1}{\lambda_{2}}+1\right)-\frac{1}{2} \lambda_{1} b^{2}\left(\frac{1}{\lambda_{2}}+1\right)=c \Rightarrow \lambda_{1}\left(a^{2}+b^{2}\right)=-\frac{2 c \lambda_{2}}{\lambda_{2}+1}
$$

$$
x_{2}^{2}+y_{2}^{2}=1 \Rightarrow \frac{1}{4}\left(\frac{\lambda_{1}}{\lambda_{2}}\right)^{2}\left(a^{2}+b^{2}\right)=1
$$

The above equations now yield λ_{1} and λ_{2} as follows:

$$
\begin{aligned}
& \frac{\lambda_{1}}{\lambda_{2}}= \pm \frac{2}{\sqrt{a^{2}+b^{2}}} \Rightarrow \pm \frac{2 \lambda_{2}}{\sqrt{a^{2}+b^{2}}}\left(a^{2}+b^{2}\right)=-\frac{2 c \lambda_{2}}{\lambda_{2}+1} \Rightarrow \lambda_{2}+1=\mp \frac{c}{\sqrt{a^{2}+b^{2}}} \\
& \Rightarrow \begin{cases}\lambda_{2}=-1-\frac{c}{\sqrt{a^{2}+b^{2}}}, & \lambda_{1}=-2 \frac{\sqrt{a^{2}+b^{2}}+c}{a^{2}+b^{2}} \\
\lambda_{2}=-1+\frac{c}{\sqrt{a^{2}+b^{2}}} ; & \lambda_{1}=+2 \frac{\sqrt{a^{2}+b^{2}}-c}{a^{2}+b^{2}}\end{cases}
\end{aligned}
$$

The points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ Cossesponding to the first solution for $\left(\lambda_{1}, \lambda_{2}\right)$ this Turn out to he:

$$
\left\{\begin{array}{l}
\left(x_{1}, y_{1}\right)=\left(-\frac{\lambda_{1} a}{2 \lambda_{2}}-\frac{\lambda_{1} a}{2},-\frac{\lambda_{1} b}{2 \lambda_{2}}-\frac{\lambda_{1} b}{2}\right)=\left(\frac{a c}{a^{2}+b^{2}}, \frac{b c}{a^{2}+b^{2}}\right) \\
\left(x_{2}, y_{2}\right)=\left(-\frac{\lambda_{1} a}{2 \lambda_{2}},-\frac{\lambda_{1} b}{2 \lambda_{2}}\right)=\left(-\frac{a}{\sqrt{a^{2}+b^{2}}},-\frac{b}{\sqrt{a^{2}+b^{2}}}\right)
\end{array}\right.
$$

The fecond solution fo $\left(\lambda_{1}, \lambda_{2}\right)$ yields:

$$
\left\{\begin{array}{l}
\left(x_{1}, y_{1}\right)=\left(\frac{a c}{a^{2}+b^{2}}, \frac{b c}{a^{2}+b^{2}}\right) \\
\left(x_{2}, y_{2}\right)=\left(\frac{a}{\sqrt{a^{2}+b^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}}}\right)
\end{array}\right.
$$

In both cases, the point $\left(x_{1}, y_{1}\right)$, located on the straight lime $a x+b y=c$, is the same. The points $\left(x_{2}, y_{2}\right)$, howewn, are on opposite sides of the circle. These three points are all located on the perpendicular dropped from the Center of the circle ont the straight line.

Problem 3) Second method) Let the point $\left(x_{1}, y_{1}\right)$ be located on the straight line $a x+b y=c$. Then $y_{1}=\left(c-a x_{1}\right) / b$. We will minimize/maximize the distance between $\left(x_{1}, y_{1}\right)$ and a point $\left(x_{2}, y_{2}\right)$ on the circle, by assuming at first that x_{1} is fixed, then optimizing x_{1} afterward. The function to optimize is $f\left(x_{1}, x_{2}, y_{2}\right)=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$, keeping in mind that $y_{1}=$ $\left(c-a x_{1}\right) / b$. The constraint on $\left(x_{2}, y_{2}\right)$ is given by $g\left(x_{2}, y_{2}\right)=x_{2}^{2}+y_{2}^{2}=1$. We proceed to optimize the coordinates $\left(x_{2}, y_{2}\right)$ of the point on the circle using the method of Lagrange multipliers, as follows:

$$
\left\{\begin{array} { l }
{ \partial (f + \lambda g) / \partial x _ { 2 } = 2 (x _ { 2 } - x _ { 1 }) + 2 \lambda x _ { 2 } = 0 } \tag{1}\\
{ \partial (f + \lambda g) / \partial y _ { 2 } = 2 (y _ { 2 } - y _ { 1 }) + 2 \lambda y _ { 2 } = 0 }
\end{array} \rightarrow \left\{\begin{array}{l}
x_{2}=x_{1} /(1+\lambda) \\
y_{2}=y_{1} /(1+\lambda)
\end{array}\right.\right.
$$

Next, we find the optimal λ by enforcing the constraint $g\left(x_{2}, y_{2}\right)=1$, that is,

$$
\begin{equation*}
g\left(x_{2}, y_{2}\right)=x_{2}^{2}+y_{2}^{2}=\left(x_{1}^{2}+y_{1}^{2}\right) /\left(1+\lambda_{0}\right)^{2}=1 \quad \rightarrow \quad \lambda_{0}= \pm \sqrt{x_{1}^{2}+y_{1}^{2}}-1 \tag{2}
\end{equation*}
$$

The optimal location of the point on the circle is thus given by

$$
\begin{equation*}
\left(x_{2}, y_{2}\right)= \pm\left(x_{1} / \sqrt{x_{1}^{2}+y_{1}^{2}}, y_{1} / \sqrt{x_{1}^{2}+y_{1}^{2}}\right) . \tag{3}
\end{equation*}
$$

Substituting the above values of $\left(x_{2}, y_{2}\right)$ in the function $f\left(x_{1}, x_{2}, y_{2}\right)$ yields the distance between $\left(x_{1}, y_{1}\right)$, located on the straight line, and $\left(x_{2}, y_{2}\right)$, located on the circle, as follows:

$$
\begin{align*}
f\left(x_{1}, x_{2}, y_{2}\right) & =\left[\left(\pm x_{1} / \sqrt{x_{1}^{2}+y_{1}^{2}}\right)-x_{1}\right]^{2}+\left[\left(\pm y_{1} / \sqrt{x_{1}^{2}+y_{1}^{2}}\right)-y_{1}\right]^{2} \\
& =\left[x_{1}^{2}\left(\pm 1-\sqrt{x_{1}^{2}+y_{1}^{2}}\right)^{2}+y_{1}^{2}\left(\pm 1-\sqrt{x_{1}^{2}+y_{1}^{2}}\right)^{2}\right] /\left(x_{1}^{2}+y_{1}^{2}\right) \\
& =\left(\pm 1-\sqrt{x_{1}^{2}+y_{1}^{2}}\right)^{2} \tag{4}
\end{align*}
$$

Recall that $y_{1}=\left(c-a x_{1}\right) / b$, and that, therefore, the above distance is now a function of x_{1} only. To find the minimum of the function, its derivative with respect to x_{1} must be set to zero.

$$
\begin{gather*}
\frac{\mathrm{d} f}{\mathrm{~d} x_{1}}=2\left(\pm 1-\sqrt{x_{1}^{2}+y_{1}^{2}}\right)\left(-x_{1}-y_{1} \frac{\mathrm{~d} y_{1}}{\mathrm{~d} x_{1}}\right) / \sqrt{x_{1}^{2}+y_{1}^{2}}=0 \\
\rightarrow x_{1}+y_{1}\left(\mathrm{~d} y_{1} / \mathrm{d} x_{1}\right)=0 \rightarrow x_{1}+\left[\left(c-a x_{1}\right) / b\right](-a / b)=0 \rightarrow x_{1}=\frac{a c}{a^{2}+b^{2}} . \tag{5}
\end{gather*}
$$

Having found the x-coordinate of the optimal point on the straight line, it is now easy to find the corresponding y-coordinate, namely,

$$
\begin{equation*}
y_{1}=\left(c-a x_{1}\right) / b=\frac{b c}{a^{2}+b^{2}} . \tag{6}
\end{equation*}
$$

The optimal coordinates of the point on the circle are readily found by substitution into Eq.(3) as

$$
\begin{equation*}
\left(x_{2}, y_{2}\right)= \pm\left(\frac{a}{\sqrt{a^{2}+b^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}}}\right) \tag{7}
\end{equation*}
$$

Note that, a perpendicular dropped from the center of the circle onto the straight line, will meet the line at $\left(x_{1}, y_{1}\right)$ given by Eqs.(5) and (6). The perpendicular crosses the circle at two different locations across a diagonal, as specified by Eq.(7). The point $\left(x_{2}, y_{2}\right)$ that is closer to $\left(x_{1}, y_{1}\right)$ will have the shortest distance from the line. The diagonally opposite point on the circle, $\left(-x_{2},-y_{2}\right)$, represents a local minimum, but not an absolute minimum.

