Problem 2) Equating the first-order derivatives of $g(x, y)=a+b x+c y+d x^{2}+e y^{2}+f x y$ with respect to x and y to zero, we find the point $\left(x_{0}, y_{0}\right)$ that is the location of either a minimum, or a maximum, or a saddle point, as follows:

$$
\begin{aligned}
&\left\{\begin{array}{l}
\frac{\partial g}{\partial x}=b+2 d x_{0}+f y_{0}=0 \\
\frac{\partial g}{\partial y}=c+2 e y_{0}+f x_{0}=0
\end{array} \rightarrow \quad\left(\begin{array}{cc}
2 d & f \\
f & 2 e
\end{array}\right)\binom{x_{0}}{y_{0}}=-\binom{b}{c}\right. \\
& \rightarrow \quad\binom{x_{0}}{y_{0}}=-\left(\begin{array}{cc}
2 d & f \\
f & 2 e
\end{array}\right)^{-1}\binom{b}{c}=-\frac{1}{4 d e-f^{2}}\left(\begin{array}{cc}
2 e & -f \\
-f & 2 d
\end{array}\right)\binom{b}{c} \\
& \rightarrow \quad\binom{x_{0}}{y_{0}}=\binom{\frac{2 e b-f c}{f^{2}-4 d e}}{\frac{2 d c-f b}{f^{2}-4 d e}} . \leftrightarrow \begin{array}{l}
\text { point at which the function } g(x, y) \text { is either } \\
\text { a maximum, a minimum, or a saddle point. }
\end{array}
\end{aligned}
$$

The second derivatives of $g(x, y)$ are now evaluated as follows:

$$
g_{x x}=\frac{\partial^{2} g(x, y)}{\partial x^{2}}=2 d ; \quad g_{y y}=\frac{\partial^{2} g(x, y)}{\partial y^{2}}=2 e ; \quad g_{x y}=\frac{\partial^{2} g(x, y)}{\partial x \partial y}=f .
$$

Normally, we would have to evaluate the second-order derivatives at $\left(x_{0}, y_{0}\right)$. In this problem, however, the second-order derivatives are constants (i.e., independent of x and y). We thus proceed to write down the conditions for the existence of a maximum or a minimum.

$$
g_{x y}^{2}<g_{x x} g_{y y} \rightarrow f^{2}<4 e d^{\nearrow}{ }^{\downarrow} \text { both } e \text { and } d \text { positive } \rightarrow g\left(x_{0}, y_{0}\right) \text { is minimum. }
$$

If $f^{2}>4 e d$, there will be two straight lines in the $x y$-plane that go through $\left(x_{0}, y_{0}\right)$. These lines divide the $x y$-plane into four regions. In two of these regions $g(x, y)>g\left(x_{0}, y_{0}\right)$, while in the remaining two $g(x, y)<g\left(x_{0}, y_{0}\right)$. The point $\left(x_{0}, y_{0}\right)$ is, therefore, a saddle point.

If $f^{2}=4 e d$, the point $\left(x_{0}, y_{0}\right)$ may not exist; see the denominator of the expressions obtained above for x_{0} and y_{0}. In this case, $\partial g / \partial x=0$ along one straight line, while $\partial g / \partial y=0$ along another straight line. These two lines are parallel to each other and, therefore, do not cross. Since the loci of $\partial g / \partial x=0$ and $\partial g / \partial y=0$ do not have a common point, the point $\left(x_{0}, y_{0}\right)$ does not exist in this case. If these two straight lines happen to overlap, however, then $g(x, y)$ will be constant along the entire line. Instead of a single minimum or maximum, there now exists an entire line over which $g(x, y)$ is either a minimum (if both e and d are positive), or a maximum (if both e and d are negative). The slope $\Delta y / \Delta x$ of this line is given by $-2 d / f$.

