<hr/>

Solutions

Problem 2) Equating the first-order derivatives of $g(x, y) = a + bx + cy + dx^2 + ey^2 + fxy$ with respect to x and y to zero, we find the point (x_0, y_0) that is the location of either a minimum, or a maximum, or a saddle point, as follows:

$$\begin{cases} \frac{\partial g}{\partial x} = b + 2dx_0 + fy_0 = 0\\ \frac{\partial g}{\partial y} = c + 2ey_0 + fx_0 = 0 \end{cases} \rightarrow \begin{pmatrix} 2d & f\\ f & 2e \end{pmatrix} \begin{pmatrix} x_0\\ y_0 \end{pmatrix} = -\begin{pmatrix} b\\ c \end{pmatrix} \\ \begin{pmatrix} x_0\\ y_0 \end{pmatrix} = -\begin{pmatrix} 2d & f\\ f & 2e \end{pmatrix}^{-1} \begin{pmatrix} b\\ c \end{pmatrix} = -\frac{1}{4de - f^2} \begin{pmatrix} 2e & -f\\ -f & 2d \end{pmatrix} \begin{pmatrix} b\\ c \end{pmatrix} \\ \begin{pmatrix} c \end{pmatrix} \\ \begin{pmatrix} x_0\\ y_0 \end{pmatrix} = \begin{pmatrix} \frac{2eb - fc}{f^2 - 4de}\\ \frac{2dc - fb}{f^2 - 4de} \end{pmatrix}.$$

The second derivatives of g(x, y) are now evaluated as follows:

$$g_{xx} = \frac{\partial^2 g(x,y)}{\partial x^2} = 2d;$$
 $g_{yy} = \frac{\partial^2 g(x,y)}{\partial y^2} = 2e;$ $g_{xy} = \frac{\partial^2 g(x,y)}{\partial x \partial y} = f.$

Normally, we would have to evaluate the second-order derivatives at (x_0, y_0) . In this problem, however, the second-order derivatives are constants (i.e., independent of x and y). We thus proceed to write down the conditions for the existence of a maximum or a minimum.

$$g_{xy}^2 < g_{xx}g_{yy} \rightarrow f^2 < 4ed \bigvee^{r}$$
 both *e* and *d* positive $\rightarrow g(x_0, y_0)$ is minimum.
both *e* and *d* negative $\rightarrow g(x_0, y_0)$ is maximum.

If $f^2 > 4ed$, there will be two straight lines in the *xy*-plane that go through (x_0, y_0) . These lines divide the *xy*-plane into four regions. In two of these regions $g(x, y) > g(x_0, y_0)$, while in the remaining two $g(x, y) < g(x_0, y_0)$. The point (x_0, y_0) is, therefore, a saddle point.

If $f^2 = 4ed$, the point (x_0, y_0) may not exist; see the denominator of the expressions obtained above for x_0 and y_0 . In this case, $\partial g/\partial x = 0$ along one straight line, while $\partial g/\partial y = 0$ along another straight line. These two lines are parallel to each other and, therefore, do not cross. Since the loci of $\partial g/\partial x = 0$ and $\partial g/\partial y = 0$ do not have a common point, the point (x_0, y_0) does *not* exist in this case. If these two straight lines happen to overlap, however, then g(x, y)will be constant along the entire line. Instead of a single minimum or maximum, there now exists an entire line over which g(x, y) is either a minimum (if both *e* and *d* are positive), or a maximum (if both *e* and *d* are negative). The slope $\Delta y/\Delta x$ of this line is given by -2d/f.