Solutions

Problem 18) The binomial expansions of $(x + y)^n$ and $(x + y)^{2n}$ are written straightforwardly, as follows:

$$(x+y)^{n} = \sum_{k=0}^{n} {n \choose k} x^{n-k} y^{k}.$$
 (1)

$$(x+y)^{2n} = \sum_{m=0}^{2n} {\binom{2n}{m}} x^{2n-m} y^m.$$
(2)

Squaring Eq.(1) now yields

$$(x+y)^{2n} = \sum_{k=0}^{n} {n \choose k} x^{n-k} y^{k} \times \sum_{k'=0}^{n} {n \choose k'} x^{n-k'} y^{k'}$$

$$k+k'=m \Rightarrow = \sum_{k=0}^{n} \sum_{k'=0}^{n} {n \choose k} {n \choose k'} x^{2n-k-k'} y^{k+k'}$$

$$= \sum_{m=0}^{2n} \left[\sum_{k=\max(0,m-n)}^{\min(m,n)} {n \choose k} {n \choose m-k} \right] x^{2n-m} y^{m}.$$
(3)

At m = n, the coefficient of $x^{2n-m}y^m$ in Eq.(2) is $\binom{2n}{n}$. The corresponding coefficient in Eq.(3) is $\sum_{k=0}^n \binom{n}{k} \binom{n}{n-k}$. Thus, considering that $\binom{n}{k} = \frac{n!}{k!(n-k)!} = \binom{n}{n-k}$, we will have

$$\sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k} = \sum_{k=0}^{n} \binom{n}{k}^{2} = \binom{2n}{n}.$$
(4)