Problem 15) a) $f(x)=\sum_{n=1}^{\infty}\left(x^{n} / n\right) \quad \rightarrow \quad f^{\prime}(x)=\sum_{n=1}^{\infty} x^{n-1}=1 /(1-x)$

$$
\rightarrow f(x)=c+\int \frac{\mathrm{d} x}{1-x}=c-\ln (1-x)
$$

To determine the integration constant c, note that $f(0)=\left.\sum_{n=1}^{\infty}\left(x^{n} / n\right)\right|_{x=0}=0$. Considering that $f(0)=c-\ln 1=0$, we conclude that $c=0$ and that, therefore, $f(x)=-\ln (1-x)$.
b) $\quad g(x)=\sum_{n=1}^{\infty}\left[x^{n+1} / n(n+1)\right] \quad \rightarrow \quad g^{\prime}(x)=\sum_{n=1}^{\infty}\left(x^{n} / n\right)=f(x)$

$$
\rightarrow \quad g(x)=c+\int f(x) \mathrm{d} x=c-\int \ln (1-x) \mathrm{d} x=c+x+(1-x) \ln (1-x) .
$$

In the above derivation, we have guessed the anti-derivative of $\ln (1-x)$. The result is readily confirmed by differentiating $(1-x) \ln (1-x)$, which yields $-\ln (1-x)-1$. The undesirable -1 is subsequently eliminated by the additional term x in the anti-derivative. To determine the integration constant c, note that $g(0)=0$. Consequently, $c+0+\ln 1=0$, which yields $c=0$. We thus arrive at $g(x)=x+(1-x) \ln (1-x)$.
c) $\quad h(x)=\sum_{n=1}^{\infty} \frac{x^{n+2}}{n(n+1)(n+2)} \quad \rightarrow \quad h^{\prime}(x)=\sum_{n=1}^{\infty}\left[x^{n+1} / n(n+1)\right]=g(x)$

$$
\begin{aligned}
\rightarrow \quad h(x) & =c+\int g(x) \mathrm{d} x=c+\int[x+(1-x) \ln (1-x)] \mathrm{d} x \\
& =c+1 / 2 x^{2}-1 / 2(1-x)^{2} \ln (1-x)+1 / 4(1-x)^{2}
\end{aligned}
$$

In the above derivation, we have guessed the anti-derivative of $(1-x) \ln (1-x)$. The result is confirmed by differentiating $-1 / 2(1-x)^{2} \ln (1-x)$, which yields $(1-x) \ln (1-x)+1 / 2(1-x)$. The undesirable $1 / 2(1-x)$ is subsequently eliminated by the additional term $1 / 4(1-x)^{2}$ in the anti-derivative. To determine the integration constant c, we note that $h(0)=0$. Consequently, $h(0)=c+1 / 4=0$, which yields $c=-1 / 4$. We thus have $h(x)=\frac{3}{4} x^{2}-\frac{1}{2} x-\frac{1}{2}(1-x)^{2} \ln (1-x)$.

