Problem 14) Using the binomial expansion $(x+y)^{n}=\sum_{m=0}^{n}\binom{n}{m} x^{n-m} y^{m}$, we write

$$
\begin{align*}
& 2^{n}=(1+1)^{n}=\sum_{m=0}^{n}\binom{n}{m}=\sum_{m=0,2,4,6, \cdots}^{n}\binom{n}{m}+\sum_{m=1,3,5,7, \cdots}^{n}\binom{n}{m} . \tag{1}\\
& 0=(1-1)^{n}=\sum_{m=0}^{n}\binom{n}{m}(-1)^{m}=\sum_{m=0,2,4,6, \cdots}^{n}\binom{n}{m}-\sum_{m=1,3,5,7, \cdots}^{n}\binom{n}{m} . \tag{2}
\end{align*}
$$

Adding Eqs.(1) and (2) yields the sum over even values of m as $1 / 2\left(2^{n}+0\right)=2^{n-1}$. Similarly, subtracting Eq.(2) from Eq.(1) yields the sum over odd values of m as $1 / 2\left(2^{n}-0\right)=2^{n-1}$.

