Problem 4)

$$
\begin{aligned}
\frac{\sin x \cos x}{x} & =\prod_{n=1}^{\infty}\left(1-\frac{x^{2}}{n^{2} \pi^{2}}\right) \prod_{n=1}^{\infty}\left(1-\frac{4 x^{2}}{(2 n-1)^{2} \pi^{2}}\right)=\prod_{n=1}^{\infty}\left(1-\frac{x^{2}}{n^{2} \pi^{2}}\right)\left(1-\frac{4 x^{2}}{(2 n-1)^{2} \pi^{2}}\right) \\
& =\prod_{n=1}^{\infty}\left(1-\frac{4 x^{2}}{(2 n)^{2} \pi^{2}}\right)\left(1-\frac{4 x^{2}}{(2 n-1)^{2} \pi^{2}}\right)=\prod_{n=1}^{\infty}\left(1-\left(\frac{2 x}{n \pi}\right)^{2}\right)=\frac{\sin (2 x)}{2 x} .
\end{aligned}
$$

Here we have taken advantage of the fact that, as n moves through the positive integers from 1 to ∞, the odd and even integers $2 n-1$ and $2 n$ also cover the entire range from 1 to ∞. The last infinite product has the same form as the expansion of $\sin x / x$, except for the appearance of $2 x$ in place of x. That is why we have set it equal to $\sin (2 x) /(2 x)$.

