Problem 18) Use the Taylor series expansion of e^{x}, namely $e^{x}=\sum_{n=0}^{\infty}\left(x^{n} / n!\right)$, to arrive at

$$
\begin{equation*}
\int_{0}^{1} e^{-x \ln x} \mathrm{~d} x=\int_{0}^{1} \sum_{n=0}^{\infty}\left[(-x \ln x)^{n} / n!\right] \mathrm{d} x=\sum_{n=0}^{\infty}\left[(-1)^{n} / n!\right] \int_{0}^{1} x^{n} \ln ^{n} x \mathrm{~d} x \tag{1}
\end{equation*}
$$

A change of variable from x to $y=-\ln x$ yields $x=e^{-y}, \mathrm{~d} x=-e^{-y} \mathrm{~d} y$, and, consequently,

$$
\begin{equation*}
\int_{0}^{1} x^{n} \ln ^{n} x \mathrm{~d} x=-\int_{\infty}^{0} e^{-n y}(-y)^{n} e^{-y} \mathrm{~d} y=(-1)^{n} \int_{0}^{\infty} y^{n} e^{-(n+1) y} \mathrm{~d} y=(-1)^{n} n!/(n+1)^{n+1} \tag{2}
\end{equation*}
$$

The last integral in the preceding equation is obtained using the method of integration by parts (also listed in Gradshteyn \& Ryzhik as 3.351-3). Substitution into Eq.(1) finally yields

$$
\begin{equation*}
\int_{0}^{1} e^{-x \ln x} \mathrm{~d} x=\sum_{n=0}^{\infty}\left[(-1)^{n} / n!\right] \times\left[(-1)^{n} n!/(n+1)^{n+1}\right]=\sum_{n=0}^{\infty}(n+1)^{-(n+1)} . \tag{3}
\end{equation*}
$$

