
Solution to Problem 15) The goal here is to find an appropriate change of variable that 
would turn Euler’s integral ∫ 𝑒𝑒−𝑡𝑡𝑡𝑡𝑛𝑛d𝑡𝑡∞

0  into an integral that can be readily evaluated in 
the limit when 𝑛𝑛 → ∞. To this end, we must first examine the integrand 𝑓𝑓(𝑡𝑡) = 𝑒𝑒−𝑡𝑡𝑡𝑡𝑛𝑛. 

a) 𝑓𝑓′(𝑡𝑡) = −𝑒𝑒−𝑡𝑡𝑡𝑡𝑛𝑛 + 𝑛𝑛𝑒𝑒−𝑡𝑡𝑡𝑡𝑛𝑛−1 = (𝑛𝑛 − 𝑡𝑡)𝑒𝑒−𝑡𝑡𝑡𝑡𝑛𝑛−1 = 0  →    𝑡𝑡0 = 𝑛𝑛. (1) 

 𝑓𝑓″(𝑡𝑡) = 𝑒𝑒−𝑡𝑡𝑡𝑡𝑛𝑛 − 2𝑛𝑛𝑒𝑒−𝑡𝑡𝑡𝑡𝑛𝑛−1 + 𝑛𝑛(𝑛𝑛 − 1)𝑒𝑒−𝑡𝑡𝑡𝑡𝑛𝑛−2 

 = 𝑒𝑒−𝑡𝑡𝑡𝑡𝑛𝑛−2[𝑡𝑡2 − 2𝑛𝑛𝑡𝑡 + 𝑛𝑛(𝑛𝑛 − 1)] = 0   →     𝑡𝑡1,2 = 𝑛𝑛 ± √𝑛𝑛. (2) 

The function 𝑓𝑓(𝑡𝑡) is thus seen to peak at 𝑡𝑡0 = 𝑛𝑛, and to have inflection points on 
both sides of the peak at a distance of ±√𝑛𝑛. A plot of 𝑓𝑓(𝑡𝑡) versus 𝑡𝑡 reveals that it more 
and more resembles the Gaussian function exp[−(𝑥𝑥 − 𝑥𝑥0)2 𝑤𝑤0

2⁄ ] as 𝑛𝑛 becomes larger. A 
change of variable for Euler’s integral is thus suggested by this resemblance to the 
Gaussian function, that is, 𝑥𝑥 = (𝑡𝑡 − 𝑛𝑛) √𝑛𝑛⁄ . We will have 

 𝑛𝑛! = ∫ 𝑒𝑒−𝑡𝑡𝑡𝑡𝑛𝑛d𝑡𝑡∞
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= � 𝑒𝑒−�𝑛𝑛+√𝑛𝑛𝑥𝑥�(𝑛𝑛 + √𝑛𝑛𝑥𝑥)𝑛𝑛√𝑛𝑛d𝑥𝑥
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Given the way the variable 𝑥𝑥 has been defined, the range of values of 𝑥𝑥 over which 
the above integrand is substantial must be centered around 𝑥𝑥 = 0, with a width no greater 
than a few units on either side of 𝑥𝑥 = 0. Consequently, for large 𝑛𝑛, one may treat 𝑥𝑥 √𝑛𝑛⁄  
as a small entity. Recalling that ln(1 + 𝜀𝜀) = 𝜀𝜀 − ½𝜀𝜀2 + ⅓𝜀𝜀3 −⋯, we will have 
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 (4) 
Substitution into Eq.(3) now yields 

 𝑛𝑛! = √𝑛𝑛(𝑛𝑛 𝑒𝑒⁄ )𝑛𝑛 � 𝑒𝑒−√𝑛𝑛𝑥𝑥𝑒𝑒√𝑛𝑛𝑥𝑥 − ½𝑥𝑥2 + (𝑥𝑥3 3√𝑛𝑛 ⁄ ) + ⋯ d𝑥𝑥
∞
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 = √𝑛𝑛(𝑛𝑛 𝑒𝑒⁄ )𝑛𝑛 � 𝑒𝑒−½𝑥𝑥2 + (𝑥𝑥3 3√𝑛𝑛⁄  ) + ⋯ d𝑥𝑥
∞
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. (5) 

In the limit of large 𝑛𝑛, the lower limit of the integral can be replaced with −∞, and 
terms of order 𝑥𝑥3 and higher that appear in the exponent of the integrand can be safely 
ignored. The integral in Eq.(5) then approaches ∫ exp(−½𝑥𝑥2) d𝑥𝑥∞

−∞ = √2𝜋𝜋, yielding the 
final (asymptotic) result as 𝑛𝑛! ~ √2𝜋𝜋𝑛𝑛(𝑛𝑛 𝑒𝑒⁄ )𝑛𝑛. This is consistent, of course, with 
Stirling’s upper and lower bounds on 𝑛𝑛!, since √2𝜋𝜋 ≅ 2.506628, which is greater than 
𝑒𝑒7 8⁄ ≅ 2.398875 and smaller than 𝑒𝑒 ≅ 2.718282. 
 


