Solution to Problem 15) The goal here is to find an appropriate change of variable that would turn Euler's integral $\int_{0}^{\infty} e^{-t} t^{n} \mathrm{~d} t$ into an integral that can be readily evaluated in the limit when $n \rightarrow \infty$. To this end, we must first examine the integrand $f(t)=e^{-t} t^{n}$.
a) $\quad f^{\prime}(t)=-e^{-t} t^{n}+n e^{-t} t^{n-1}=(n-t) e^{-t} t^{n-1}=0 \quad \rightarrow \quad t_{0}=n$.

$$
\begin{align*}
f^{\prime \prime}(t) & =e^{-t} t^{n}-2 n e^{-t} t^{n-1}+n(n-1) e^{-t} t^{n-2} \tag{1}\\
& =e^{-t} t^{n-2}\left[t^{2}-2 n t+n(n-1)\right]=0 \quad \rightarrow \quad t_{1,2}=n \pm \sqrt{n} \tag{2}
\end{align*}
$$

The function $f(t)$ is thus seen to peak at $t_{0}=n$, and to have inflection points on both sides of the peak at a distance of $\pm \sqrt{n}$. A plot of $f(t)$ versus t reveals that it more and more resembles the Gaussian function $\exp \left[-\left(x-x_{0}\right)^{2} / w_{0}^{2}\right]$ as n becomes larger. A change of variable for Euler's integral is thus suggested by this resemblance to the Gaussian function, that is, $x=(t-n) / \sqrt{n}$. We will have

$$
\begin{align*}
n!=\int_{0}^{\infty} e^{-t} t^{n} \mathrm{~d} t & =\int_{-\sqrt{n}}^{\infty} e^{-(n+\sqrt{n} x)}(n+\sqrt{n} x)^{n} \sqrt{n} \mathrm{~d} x \\
& =\sqrt{n}(n / e)^{n} \int_{-\sqrt{n}}^{\infty} e^{-\sqrt{n} x}\left(1+\frac{x}{\sqrt{n}}\right)^{n} \mathrm{~d} x \tag{3}
\end{align*}
$$

Given the way the variable x has been defined, the range of values of x over which the above integrand is substantial must be centered around $x=0$, with a width no greater than a few units on either side of $x=0$. Consequently, for large n, one may treat x / \sqrt{n} as a small entity. Recalling that $\ln (1+\varepsilon)=\varepsilon-1 / 2 \varepsilon^{2}+1 / 3 \varepsilon^{3}-\cdots$, we will have

$$
\begin{equation*}
\ln \left(1+\frac{x}{\sqrt{n}}\right)^{n}=n \ln \left(1+\frac{x}{\sqrt{n}}\right)=n\left(\frac{x}{\sqrt{n}}-\frac{x^{2}}{2 n}+\frac{x^{3}}{3 n \sqrt{n}}-\cdots\right)=\sqrt{n} x-1 / 2 x^{2}+\frac{x^{3}}{3 \sqrt{n}}+\cdots \tag{4}
\end{equation*}
$$

Substitution into Eq.(3) now yields

$$
\begin{align*}
n! & =\sqrt{n}(n / e)^{n} \int_{-\sqrt{n}}^{\infty} e^{-\sqrt{n} x} e^{\sqrt{n} x-1 / 2 x^{2}+\left(x^{3} / 3 \sqrt{n}\right)+\cdots} \mathrm{d} x \\
& =\sqrt{n}(n / e)^{n} \int_{-\sqrt{n}}^{\infty} e^{-1 / 2 x^{2}+\left(x^{3} / 3 \sqrt{n}\right)+\cdots} \mathrm{d} x . \tag{5}
\end{align*}
$$

In the limit of large n, the lower limit of the integral can be replaced with $-\infty$, and terms of order x^{3} and higher that appear in the exponent of the integrand can be safely ignored. The integral in Eq.(5) then approaches $\int_{-\infty}^{\infty} \exp \left(-1 / 2 x^{2}\right) \mathrm{d} x=\sqrt{2 \pi}$, yielding the final (asymptotic) result as $n!\sim \sqrt{2 \pi n}(n / e)^{n}$. This is consistent, of course, with Stirling's upper and lower bounds on $n!$, since $\sqrt{2 \pi} \cong 2.506628$, which is greater than $e^{7 / 8} \cong 2.398875$ and smaller than $e \cong 2.718282$.

