Solution to Problem 14) Wallis's product formula may be rearranged, as follows:

$$
\frac{\pi}{2}=\lim _{m \rightarrow \infty} \frac{(2 m)!!}{(2 m-1)!!} \times \frac{(2 m)!!}{(2 m+1)!!}=\lim _{m \rightarrow \infty} \frac{[(2 m)!!]^{4}}{(2 m)!\times(2 m+1)!}=\lim _{m \rightarrow \infty} \frac{2^{4 m}(m!)^{4}}{(2 m+1) \times[(2 m)!]^{2}} .
$$

In the limit when $m \rightarrow \infty$, substitution of Stirling's asymptotic formula for m ! and $(2 m)!$ in the above equation yields

$$
\begin{aligned}
\frac{\pi}{2} & =\lim _{m \rightarrow \infty} \frac{2^{4 m}\left[c \sqrt{m}(m / e)^{m}\right]^{4}}{(2 m+1) \times\left[c \sqrt{2 m}(2 m / e)^{2 m}\right]^{2}}=c^{2} \lim _{m \rightarrow \infty} \frac{2^{4 m} m^{2}(m / e)^{4 m}}{(2 m+1) \times 2 m(2 m / e)^{4 m}} \\
& =c^{2} \lim _{m \rightarrow \infty} \frac{m}{2(2 m+1)}=\frac{c^{2}}{4} \quad \rightarrow \quad c=\sqrt{2 \pi} .
\end{aligned}
$$

Digression: Strictly speaking, one needs to demonstrate that $n!/\left[\sqrt{n}(n / e)^{n}\right]$ approaches a limit when $n \rightarrow \infty$, before one can assign a constant c to this limit. Given that Stirling's approximation has already established an upper bound, e, and a lower bound, $e^{7 / 8}$, for the ratio $n!/\left[\sqrt{n}(n / e)^{n}\right]$, it suffices to verify that the sequence is either monotonically increasing or monotonically decreasing as $n \rightarrow \infty$. Recalling that the logarithmic function is monotonic, we examine the sequence $\alpha_{n}=\ln \left\{n!/\left[\sqrt{n}(n / e)^{n}\right]\right\}$ for its monotonicity.

$$
\begin{aligned}
\alpha_{n+1}-\alpha_{n} & =\ln [(n+1)!]-\ln \sqrt{n+1}-(n+1) \ln [(n+1) / e]-[\ln (n!)-\ln \sqrt{n}-n \ln (n / e)] \\
& =\ln (n+1)-1 / 2 \ln \left(1+n^{-1}\right)-n \ln \left(1+n^{-1}\right)-\ln (n+1)+1 \\
& =1-(n+1 / 2) \ln \left(1+n^{-1}\right) \\
& =1-1 / 2(2 n+1)\left[\ln \left(1+\frac{1}{2 n+1}\right)-\ln \left(1-\frac{1}{2 n+1}\right)\right] \\
& =1-1 / 2(2 n+1)\left[\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k(2 n+1)^{k}}+\sum_{k=1}^{\infty} \frac{1}{k(2 n+1)^{k}}\right] \\
& =1-1 / 2(2 n+1) \sum_{k=0}^{\infty} \frac{2}{(2 k+1)(2 n+1)^{2 k+1}} \\
& =1-\sum_{k=0}^{\infty} \frac{1}{(2 k+1)(2 n+1)^{2 k}}=-\sum_{k=1}^{\infty} \frac{1}{(2 k+1)(2 n+1)^{2 k}}
\end{aligned}
$$

Clearly, $\alpha_{n+1}-\alpha_{n}<0$, which indicates that the sequence is monotonically decreasing.

