
Solution to Problem 14) Wallis’s product formula may be rearranged, as follows: 
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In the limit when 𝑚𝑚 → ∞, substitution of Stirling’s asymptotic formula for 𝑚𝑚! and 
(2𝑚𝑚)! in the above equation yields 
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            →             𝑐𝑐 = √2𝜋𝜋. 

Digression: Strictly speaking, one needs to demonstrate that 𝑛𝑛! [√𝑛𝑛(𝑛𝑛 𝑒𝑒⁄ )𝑛𝑛]⁄  approaches 
a limit when 𝑛𝑛 → ∞, before one can assign a constant 𝑐𝑐 to this limit. Given that Stirling’s 
approximation has already established an upper bound, 𝑒𝑒, and a lower bound, 𝑒𝑒7 8⁄ , for 
the ratio 𝑛𝑛! [√𝑛𝑛(𝑛𝑛 𝑒𝑒⁄ )𝑛𝑛]⁄ , it suffices to verify that the sequence is either monotonically 
increasing or monotonically decreasing as 𝑛𝑛 → ∞. Recalling that the logarithmic function 
is monotonic, we examine the sequence 𝛼𝛼𝑛𝑛 = ln�𝑛𝑛! [√𝑛𝑛(𝑛𝑛 𝑒𝑒⁄ )𝑛𝑛]⁄ � for its monotonicity. 
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Clearly, 𝛼𝛼𝑛𝑛+1 − 𝛼𝛼𝑛𝑛 < 0, which indicates that the sequence is monotonically decreasing. 
 


