Solution to Problem 13) Applying the method of integration by parts, we find

$$
\begin{align*}
I_{n}= & \int_{0}^{\pi / 2} \sin ^{n}(x) \mathrm{d} x=\int_{0}^{\pi / 2} \sin (x) \sin ^{n-1}(x) \mathrm{d} x \\
= & -\left.\cos (x) \sin ^{n-1}(x)\right|_{0} ^{\pi / 2}+(n-1) \int_{0}^{\pi / 2} \cos ^{2}(x) \sin ^{n-2}(x) \mathrm{d} x \\
= & (n-1) \int_{0}^{\pi / 2}\left(1-\sin ^{2} x\right) \sin ^{n-2}(x) \mathrm{d} x=(n-1)\left(I_{n-2}-I_{n}\right) \\
& \rightarrow I_{n}=[(n-1) / n] I_{n-2} . \tag{1}
\end{align*}
$$

The area under $\sin ^{n}(x)$ is a monotonically decreasing function of n, which approaches zero as $n \rightarrow \infty$. Equation (1) shows that the ratio I_{n-2} / I_{n} approaches 1 as $n \rightarrow \infty$. Considering that the sequence is monotonically decreasing, we conclude that the ratio I_{n-1} / I_{n} of adjacent members of the sequence must also approach 1 as $n \rightarrow \infty$.

If n is an even integer, continuation of the procedure that has led to Eq.(1) will eventually stop at $I_{0}=\pi / 2$, in which case,

$$
\begin{equation*}
I_{n}=I_{2 m}=\frac{\pi(n-1)!!}{2(n!!)}=\frac{\pi(2 m-1)!!}{2(2 m)!!} . \tag{2}
\end{equation*}
$$

In contrast, if n happens to be an odd integer, we will have $I_{1}=\int_{0}^{\pi / 2} \sin x \mathrm{~d} x=1$, and, therefore,

$$
\begin{equation*}
I_{n}=I_{2 m+1}=\frac{(n-1)!!}{n!!}=\frac{(2 m)!!}{(2 m+1)!!} . \tag{3}
\end{equation*}
$$

The Wallis product emerges from Eqs.(2) and (3) above, if we now set the limit of $I_{2 m+1} / I_{2 m}$ equal to 1 when $m \rightarrow \infty$, that is,

$$
\begin{equation*}
1=\lim _{m \rightarrow \infty} \frac{I_{2 m+1}}{I_{2 m}}=\lim _{m \rightarrow \infty} \frac{(2 m)!!}{(2 m+1)!!} \times \frac{2(2 m)!!}{\pi(2 m-1)!!} \rightarrow \prod_{m=1}^{\infty}\left(\frac{2 m}{2 m-1} \cdot \frac{2 m}{2 m+1}\right)=\frac{\pi}{2} . \tag{4}
\end{equation*}
$$

