Problem 20) Dropping the perpendicular line $D E$ from D onto $A B$, as in figure (a), we will have

$$
\begin{equation*}
\tan \theta=\overline{E D} / \overline{E B}=\overline{E D} /(\overline{A B}-\overline{A E})=\overline{A D} \sin 20^{\circ} /\left(\overline{A B}-\overline{A D} \cos 20^{\circ}\right) . \tag{1}
\end{equation*}
$$

Dropping the perpendicular bisector $A F$ from A onto $B C$, as in figure (b), we will have

$$
\begin{equation*}
\sin 10^{\circ}=\overline{B F} / \overline{A B}=\overline{B C} /(2 \overline{A B})=\overline{A D} /(2 \overline{A B}) \quad \rightarrow \quad \overline{A D}=2 \overline{A B} \sin 10^{\circ} . \tag{2}
\end{equation*}
$$

Substitution into Eq.(1) now yields

$$
\begin{equation*}
\tan \theta=\frac{2 \sin 10^{\circ} \sin 20^{\circ}}{1-2 \sin 10^{\circ} \cos 20^{\circ}} \tag{3}
\end{equation*}
$$

The formula is completely general and applies to any isosceles triangle having angle α at its vertex A, namely,

$$
\begin{equation*}
\tan \theta=\frac{2 \sin (\alpha / 2) \sin \alpha}{1-2 \sin (\alpha / 2) \cos \alpha} . \tag{4}
\end{equation*}
$$

This is true irrespective of whether $\alpha \leq 60^{\circ}$, in which case D lies between A and C, or $60^{\circ}<\alpha \leq 180^{\circ}$, in which case D lies on the extension of $A C$ beyond the vertex C. In the special case of $\alpha=20^{\circ}$, the solution is simplified by writing 1 in the denominator as follows:

(d)

$$
\begin{equation*}
1=2 \sin 30^{\circ}=2 \sin \left(10^{\circ}+20^{\circ}\right)=2 \sin 10^{\circ} \cos 20^{\circ}+2 \cos 10^{\circ} \sin 20^{\circ} . \tag{5}
\end{equation*}
$$

Substitution into Eq.(3) now yields $\tan \theta=\tan 10^{\circ}$, and, therefore, $\theta=10^{\circ}$. This result also emerges from a fully geometrical treatment of the problem, as follows. With reference to figure (c), construct the $G D A$ triangle over the base $A D$ to be identical with the $A B C$ triangle. The angle $G A D$ is 80° and, therefore, the angle $G A B$ is 60°. Considering that $\overline{A G}=\overline{A B}$, the isosceles triangle $A G B$ with an apex angle of 60° must be equilateral. Consequently, $\overline{G B}=\overline{G A}$ and, therefore, $\overline{G B}=\overline{G D}$. Now, referencing figure (d), since the isosceles triangle $G B D$ has an apex angle of 40°, the angle $G B D$ must be 70°, which reveals that the angle θ is 10°.

