Problem 15) a) It is easier to begin with finding the volume of a hemisphere of radius R , then multiply the result by 2 to arrive at the desired volume of the full sphere. Considering that the surface area of the n^{th} slice of the hemisphere is given by $\pi [1 - (n/N)^2]R^2$, and that, according to chapter 1, problem 7, $\sum_{n=1}^{N} n^2 = N(N + 1)(2N + 1)/6$, we will have

$$
V = \lim_{N \to \infty} \sum_{n=0}^{N-1} \pi [1 - (n/N)^2] R^2 (R/N) = \lim_{N \to \infty} (\pi R^3 / N) [N - (\sum_{n=0}^{N-1} n^2) / N^2]
$$

= $\pi R^3 [1 - \lim_{N \to \infty} N(N-1)(2N-1) / (6N^3)]$
= $\pi R^3 [1 - \frac{1}{6} \lim_{N \to \infty} (1 - N^{-1}) (2 - N^{-1})] = \frac{2}{3} \pi R^3$.

The volume of the full sphere is thus given by $4\pi R^3/3$.

b) Let a sphere of radius R be enclosed within a (concentric) sphere of radius $R + \Delta R$. The volume ΔV of the thin region between the two spheres is readily seen to be

$$
\Delta V = (4\pi/3)[(R + \Delta R)^3 - R^3] = 4\pi R^2 \Delta R [1 + (\Delta R/R) + 1/3(\Delta R/R)^2].
$$

In the limit when $\Delta R/R$ becomes exceedingly small, one can safely ignore the second and third terms on the right-hand side of the above equation to arrive at $\Delta V \cong 4\pi R^2 \Delta R$. The volume ΔV , however, must be nearly equal to the surface area S of the inner sphere multiplied by the width ΔR of the gap that separates the two spheres. In other words, $S \Delta R \cong \Delta V \cong 4\pi R^2 \Delta R$, which yields $S = 4\pi R^2$.