Problem 13) The original triangle has side-length L and area $\sqrt{3} L^{2} / 4$. The first triangle that is removed has side-length $L / 2$ and area $\sqrt{3} L^{2} / 16$. The next three triangles that are removed have side-lengths $L / 4$ and a total area of $3 \sqrt{3} L^{2} / 64$. Thus, in each step, the number of removed triangles increases by a factor of 3 , while the area of each triangle decreases by a factor of 4 . We will have

$$
\text { Area removed }=\left(\sqrt{3} L^{2} / 16\right)\left[1+(3 / 4)+(3 / 4)^{2}+(3 / 4)^{3}+\cdots\right]=\frac{\sqrt{3} L^{2} / 16}{1-(3 / 4)}=\sqrt{3} L^{2} / 4
$$

It is seen that the total area removed is equal to the area of the original triangle. As for the total length of the boundary after n steps of the removal process, we will have

$$
\begin{aligned}
\text { Length of boundary } & =3 L+(3 L / 2)+(9 L / 4)+(27 L / 8)+\cdots+\left(3^{n} L / 2^{n}\right) \\
& =3 L+(3 L / 2)\left[1+(3 / 2)+(3 / 2)^{2}+\cdots+(3 / 2)^{n-1}\right] \\
& =3 L+(3 L / 2)\left[\frac{(3 / 2)^{n}-1}{(3 / 2)-1}\right]=3(3 / 2)^{n} L
\end{aligned}
$$

The length of the boundary is seen to increase exponentially with the number n of removal steps.

