Problem 12)

$$
\begin{gathered}
s=2 R \sin (\theta / 2) \\
P=n s=2 n R \sin (\theta / 2) \\
A=n R^{2} \sin (\theta / 2) \cos (\theta / 2) \\
A / P=1 / 2 R \cos (\theta / 2)=1 / 2 R \cos (\pi / n)
\end{gathered}
$$

For a given value of R, the ratio of area to perimeter is an increasing function of the number n of the sides of the polygon. When $n \rightarrow \infty$ the ratio $A / P \rightarrow R / 2$. In this limit, the polygon becomes a circle, whose area and perimeter are $A=\pi R^{2}$ and $P=2 \pi R$, respectively.

