Problem 9) Drawing the diameter $B B^{\prime}$ divides each of the angles $\widehat{A B C}$ and $\widehat{A O C}$ into two angles. On the left-hand-side of the circle we now have $\beta=\widehat{A B O}$ and $\gamma=\widehat{A O B^{\prime}}$, for which we are going to prove that $\beta=\gamma / 2$. The same line of reasoning then applies to the remaining angles on the right-hand-side, namely, $\widehat{O B C}$ and $\widehat{B^{\prime} O C}$.

The angle γ is the external angle of the $A O B$ triangle which is supplementary to $\widehat{A O B}$ (that is, they add up to 180°). Similarly, $\alpha+\beta$ is supplementary to $\widehat{A O B}$. Therefore, $\alpha+\beta=\gamma$. However, the triangle $A O B$ is isosceles, because $A O=B O=R$. Therefore,
 $\alpha=\beta$. Consequently, $\beta=\gamma / 2$, which completes the proof.

