Problem 3) Since $A C^{\prime}$ is one-half the length of $A B$ and $A B^{\prime}$ is one-half the length of $A C$, the triangles $A B C$ and $A C^{\prime} B^{\prime}$, which also share a common angle at A, are similar. This means that $C^{\prime} B^{\prime}$ is parallel to $B C$, and also that the length of $C^{\prime} B^{\prime}$ is one-half that of $B C$. The triangles $Q B C$ and $Q B^{\prime} C^{\prime}$ are thus similar (their angles are the same). Since $B C$ is twice as long as $B^{\prime} C^{\prime}$, we conclude that $Q B$ is also twice the length of $Q B^{\prime}$, and, similarly, $Q C$ is twice as long as $Q C^{\prime}$.

The above argument can be applied to any pair of medians, say $A A^{\prime}$ and $B B^{\prime}$. Since the crossing point must once again split $B B^{\prime}$ in a $2: 1$ ratio, it cannot be any point other than Q. The three medians, therefore, cross at a single point.

