Problem 18) For n = 4, it is easy to see that $n! = 4! = 24 > 16 = 2^4 = 2^n$. Proof by induction now requires that we begin by assuming that n! is greater than 2^n for some value of n that is greater than or equal to 4, then proceed to demonstrate that (n + 1)! is greater than 2^{n+1} . We thus write $\boxed{\text{since, by assumption, } n \ge 4, \text{ we have } n + 1 > 2}$

$$(n+1)! = n! \times (n+1) > 2^n \times (n+1) > 2^n \times 2 = 2^{n+1}.$$

The proof is now complete.