Problem 17) For $N=1$, it is easy to see that $\sum_{n=1}^{1}(2 n-1)=1=1^{2}$. Suppose the identity is valid for N. Proof by induction requires that we demonstrate its validity for $N+1$. We thus write

$$
\sum_{n=1}^{N+1}(2 n-1)=\sum_{n=1}^{N}(2 n-1)+[2(N+1)-1]=N^{2}+2 N+1=(N+1)^{2} .
$$

The proof is now complete.

