Solutions

Problem 12) The smallest *n* for which the problem is meaningful is n = 2. In this case the product of the lengths $x_1x_2 = x_1(L - x_1)$ is readily maximized by setting the derivative with respect to x_1 equal to zero. We will have

$$\frac{d}{dx_1}[x_1(L-x_1)] = L - 2x_1 = 0 \quad \to \quad x_1 = L/2 \quad \to \quad x_2 = L - x_1 = L/2$$

Assume the product is known to be a maximum for some $n \ge 2$ when $x_1 = x_2 = \cdots = x_n = L/n$. What happens if we decide to divide the stick into n + 1 pieces? Fix the length of the first piece at x_1 . By assumption, the product $x_1x_2 \cdots x_n x_{n+1}$ will then be maximized if $x_2 = x_3 = \cdots = x_{n+1} = (L - x_1)/n$. Therefore, we must choose x_1 such that $x_1x_2 \cdots x_nx_{n+1} = x_1[(L - x_1)/n]^n$ is a maximum. Differentiation with respect to x_1 and setting the derivative equal to zero now yields

$$\frac{\mathrm{d}}{\mathrm{d}x_1} \left[x_1 \left(\frac{L - x_1}{n} \right)^n \right] = \left(\frac{L - x_1}{n} \right)^n + x_1 n \left(-\frac{1}{n} \right)^{n-1}$$
$$= \left(\frac{L - x_1}{n} \right)^{n-1} \left[\frac{L - (1 + n)x_1}{n} \right] = 0 \quad \rightarrow \quad \begin{cases} x_1 = L; \\ x_1 = \frac{L}{n+1} \end{cases}$$

The first solution, $x_1 = L$, is unacceptable as it leads to the product $x_1x_2 \cdots x_nx_{n+1} = 0$. The second solution, $x_1 = L/(n+1)$, however, shows that the maximum product is obtained when all n + 1 segments have equal lengths, i.e., L/(n+1). The proof by induction is now complete.