Problem 11) This problem is easily solved by invoking the fundamental theorem of arithmetic at the outset. Since any integer can be decomposed into a unique product of its prime factors, if the product $n_{1} n_{2} \cdots n_{k}$ contains the prime number p (or an integer power of p) in its decomposition, then p must belong to at least one of the constituents $n_{1}, n_{2}, \cdots, n_{k}$ of the product. This completes the proof of Euclid's lemma. (Note that our proof of the fundamental theorem given in Problem 10 in no way depends on the present problem. Of course, if one were to invoke Euclid's lemma in proving the fundamental theorem, as is often done, then a different proof of Euclid's lemma would be called for, i.e., one that did not rely on the fundamental theorem.)

The following proof of Euclid's lemma, while slightly more complicated than the aforementioned proof, is instructive in its own way-despite the fact that it continues to rely on the fundamental theorem.
a) Let $n_{1}=\mu_{1} p+v_{1}$, where $\mu_{1} \geq 0$ and $0 \leq v_{1}<p$. Similarly, let $n_{2}=\mu_{2} p+v_{2}$, with $\mu_{2} \geq 0$ and $0 \leq v_{2}<p$. Here, the parameters $\mu_{1}, v_{1}, \mu_{2}, v_{2}$ are integers. We will have

$$
n_{1} n_{2}=\mu_{1} \mu_{2} p^{2}+\left(\mu_{1} v_{2}+\mu_{2} v_{1}\right) p+v_{1} v_{2} .
$$

Since, by assumption, $n_{1} n_{2}$ is divisible by p, the product $v_{1} v_{2}$ is either zero or is itself divisible by p. If $v_{1} v_{2}$ happens to be zero, then $v_{1}=0$, in which case n_{1} is divisible by p, or $v_{2}=0$, in which case n_{2} is divisible by p, or $v_{1}=v_{2}=0$, in which case both n_{1} and n_{2} are divisible by p. However, if it turns out that $v_{1} v_{2} \neq 0$, then, given that v_{1} is less than p, its decomposition into a product of prime factors cannot contain p. Similarly, the decomposition of v_{2} cannot contain p as a prime factor. Consequently, the fundamental theorem of arithmetic informs us that $v_{1} v_{2}$ cannot contain p in its prime decomposition, which means that $v_{1} v_{2}$ is not divisible by p, thus contradicting the initial assumption that $n_{1} n_{2}$ is divisible by p.
b) Since $n_{1} n_{2} \cdots n_{k}$ is divisible by p, the proof in part (a) ensures that if n_{1} is not divisible by p then the product $n_{2} n_{3} \cdots n_{k}$ must be a multiple of p. In the latter case, if n_{2} is not a multiple of p, then the product $n_{3} \cdots n_{k}$ must be a multiple of p. Continuing in this way, we see that at least one of the integers $n_{1}, n_{2}, \cdots, n_{k}$ must be divisible by p.

