Problem 10) We use proof by contradiction, assuming at the outset that there exists a smallest integer, N, that can be decomposed into prime factors in two different ways. We then show that a smaller integer can be found that has the same property. Suppose the two decompositions of N are written as follows:

$$
\begin{equation*}
N=p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{j}^{m_{j}}=q_{1}^{n_{1}} q_{2}^{n_{2}} \cdots q_{k}^{n_{k}} \tag{1}
\end{equation*}
$$

Since, by assumption, N is the smallest integer that can be decomposed in two different ways, none of the prime factors p_{i} on the left-hand side of Eq.(1) cancel out any of the prime factors q_{ℓ} on the right-hand side. Without loss of generality, we assume that p_{1} is the smallest prime number appearing in Eq.(1), then write $q_{\ell}=\mu_{\ell} p_{1}+v_{\ell}$, where μ_{ℓ} and v_{ℓ} are positive integers, with $\mu_{\ell} \geq 1$ and $1 \leq v_{\ell}<p_{1}$. The right-hand side of Eq.(1) may now be written as $\alpha p_{1}^{\eta}+\beta$, where α, β, and η are positive integers, with $\beta=v_{1}^{n_{1}} v_{2}^{n_{2}} \cdots v_{k}^{n_{k}}$.

Next, we subtract αp_{1}^{η} from both sides of Eq.(1). Since $\alpha \geq 1$ and $\eta \geq 1$, the left-hand side of the equation ends up being an integer smaller than N, with p_{1} (or an integer power of p_{1}) as one of its prime factors. On the right-hand side, we will have $\beta=v_{1}^{n_{1}} v_{2}^{n_{2}} \cdots v_{k}^{n_{k}}$, which can be further decomposed into prime factors less than p_{1} (because $v_{1}, v_{2}, \cdots, v_{k}$ are all smaller than p_{1}). We now have a number smaller than N, that is, $N-\alpha p_{1}^{\eta}$, that is factored out in two different ways: once with p_{1} as a prime factor, and a second time with prime factors that are all smaller then p_{1}. This contradicts our starting assumption that N is the smallest integer that can be factored out in two different ways. The conclusion is that every integer can be decomposed into prime factors in only one way. This is the well-known fundamental theorem of arithmetic.

