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ProblemS)  [T[f()g()])'dx = [ ' ()g(dx + [ f(x)g' (x)dx
> [ g@dx = FgIL = [ F(0)g' (x)dx
= f(b)g(b) - f(@)g(@) - [ f(x)g’ (x)dx.
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d) In part (c), we also found that f:o cos(wx) e ™ dx = (k/w) f0°° sin(wx) e **dx. Therefore,
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1) The integral is an even function of k. To see this, make the change of variable 8 = m — ¢, then
observe that, aside from switching from k to —k, the integral remains the same; that is,

"™ sin3@ _ 0 sin3(m—¢) _ T sind 1)
.[0 (1-k cos 6)3 do = - .L [1—k cos(m—@)]3 d(p - -fo (1+K cos )3 d(p' (1)
At k = 0, the integral is substantially simplified and may be readily evaluated, as follows:
J7sin®6d6 = ["sin6 (1 — cos? §)d6 = (—cos 6 + Y5 cos® 0) 5., = 4/3. (2)

It is thus necessary only to evaluate the integral for k > 0. To this end, we use the method of
integration by parts, choosing f{(8) =sin8/(1 — kcos8)3 and g,(8) = sin? 8. Considering
that f;(0) = — (1 — Kk cos8)~2/(2k) and g;(8) = 2sin@ cos B, we will have
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To evaluate the remaining integral, let f,(8) = sin8/(1 — k cos 8)? and g,(0) = cos8,
which yield f,(8) = — (1 — kcos8) 1 /k and g,(8) = —sin 8. Consequently,
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Combining Egs.(3) and (4), we finally obtain
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Digression: As a check on the above result, consider the case of x = 0, where the integral simplifies to
fon sin® 0 df = 4/3. To confirm that Eq.(5) does in fact yield the correct result in the limit when x — 0, observe
that, for sufficiently small k, one may invoke the geometric series identity 1/(1 — k2) = 1 + k? + k* + --- as well
as the Taylor series expansion In(1 + k) = +k — YaK? + Y3 — Yax* £+ Vs> + ---. We thus arrive at
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As expected, in the limit of k — 0, the preceding expression approaches 4/3.

Equation (5) also indicates that the integral is an even function of x which diverges at k = +1. This is
consistent with the fact that, at k = 1, we have
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It remains to evaluate the integral for k > 1. Returning to Eq.(4), we now write
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Substitution into Eq.(4) and combining the result with Eq.(3), one arrives at
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As was the case with Eq.(5), the integral is seen to be an even function of k.




