Problem 1) This problem may be solved by completing the square, as follows:

$$
\begin{aligned}
a x^{2}+b x+c & =a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a}+c=0
\end{aligned} \quad \rightarrow \quad x+\frac{b}{2 a}= \pm \sqrt{\frac{b^{2}}{4 a^{2}}-\frac{c}{a}}
$$

Note that, since the coefficients a, b, and c of the quadratic equation are complex-valued, the square-root must be evaluated in the complex plane. However, the \pm sign in the above expressions is appropriate because the two roots of the complex number $\left(b^{2}-4 a c\right)$ differ from each other by the phase angle π, which results in the coefficient $\exp (\mathrm{i} \pi)=-1$.

