

Please write your name and ID number on all the pages, then staple them together.
Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

13 pts **Problem 1)** The Lorentz oscillator model relates the local polarization $\mathbf{P}(t)$ at any given point \mathbf{r} within a linear, isotropic medium to the electric field $\mathbf{E}(t)$ at the same point \mathbf{r} via the following second-order ordinary differential equation:

$$\frac{d^2}{dt^2} \mathbf{P}(t) + \gamma \frac{d}{dt} \mathbf{P}(t) + \omega_0^2 \mathbf{P}(t) = \epsilon_0 \omega_p^2 \mathbf{E}(t).$$

Here, γ is the damping coefficient, ω_0 the resonance frequency, and ω_p the plasma frequency of the host medium. In this problem you are asked to solve the above equation for $\mathbf{P}(t)$ *without* using the complex notation. This requires that you write $\mathbf{E}(t) = \mathbf{E}'_0 \cos(\omega t) + \mathbf{E}''_0 \sin(\omega t)$, where \mathbf{E}'_0 and \mathbf{E}''_0 are arbitrary real-valued vectors, while ω represents the oscillation frequency of the exciting electric field. You may begin by assuming the following form for the polarization:

$$\mathbf{P}(t) = \mathbf{P}'_0 \cos(\omega t + \varphi'_0) + \mathbf{P}''_0 \sin(\omega t + \varphi''_0),$$

then solve the differential equation to find expressions for \mathbf{P}'_0 , φ'_0 , \mathbf{P}''_0 , and φ''_0 . Your final result should be the same as that obtained in the textbook with the aid of complex notation.

Hint: $\cos a \cos b - \sin a \sin b = \cos(a + b)$ and $\sin a \cos b + \cos a \sin b = \sin(a + b)$.

Problem 2) The Fresnel reflection coefficients for *p*- and *s*-polarized light at the interfacial *xy*-plane between the incidence medium (*a*) and the transmittance medium (*b*) are given by

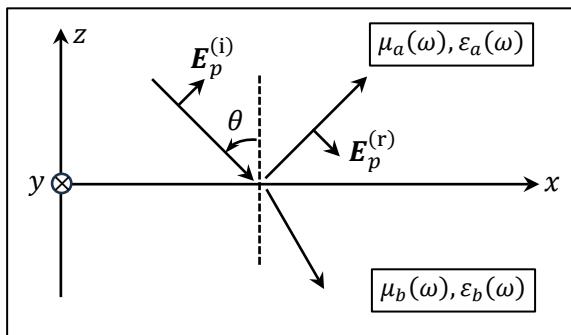
$$\rho_p = E_{x0}^{(r)} / E_{x0}^{(i)} = \frac{\epsilon_a \sqrt{\mu_b \epsilon_b - (ck_x/\omega)^2} - \epsilon_b \sqrt{\mu_a \epsilon_a - (ck_x/\omega)^2}}{\epsilon_a \sqrt{\mu_b \epsilon_b - (ck_x/\omega)^2} + \epsilon_b \sqrt{\mu_a \epsilon_a - (ck_x/\omega)^2}},$$

$$\rho_s = E_{y0}^{(r)} / E_{y0}^{(i)} = \frac{\mu_b \sqrt{\mu_a \epsilon_a - (ck_x/\omega)^2} - \mu_a \sqrt{\mu_b \epsilon_b - (ck_x/\omega)^2}}{\mu_b \sqrt{\mu_a \epsilon_a - (ck_x/\omega)^2} + \mu_a \sqrt{\mu_b \epsilon_b - (ck_x/\omega)^2}}.$$

It is assumed here that the plane of incidence is *xz* (i.e., $k_y = 0$), the angle of incidence is θ (see the figure below), the frequency of the incident plane-wave is ω , and the incidence medium's relative permeability $\mu_a(\omega)$ and relative permittivity $\epsilon_a(\omega)$ are real-valued and positive.

3 pts a) Show that $\rho_p = \rho_s$ at normal incidence (i.e., when $\theta = 0$).

4 pts b) Find ρ_p and ρ_s at grazing incidence (i.e., when $\theta \rightarrow 90^\circ$). Recalling that $\tau_p = 1 + \rho_p$ and $\tau_s = 1 + \rho_s$, your results should indicate that $\tau_p \rightarrow 2$ and $\tau_s \rightarrow 0$ as $\theta \rightarrow 90^\circ$. The result for τ_s makes sense, since one expects the beam transmitted into medium *b* to vanish at grazing incidence. However, $\tau_p \rightarrow 2$ is counter-intuitive, since the transmitted beam *appears* to not have vanished at grazing incidence. How do you reconcile the



sensible expectation with the nonzero value of the Fresnel transmission coefficient τ_p at grazing incidence?

3 pts c) Assuming that $\mu_b = \mu_a$ and that ε_b is also real and positive, show that an incidence angle θ exists at which $\rho_p = 0$; this is the so-called Brewster's angle θ_B . Under the circumstances, show that $\theta_B = \arctan(n_b/n_a)$.

4 pts d) Let $\mu_b = \mu_a$, and also let the real and positive ε_b be less than ε_a . In terms of n_a and n_b , what is the expression of θ_c (i.e., the critical angle of total internal reflection, where $|\rho_p| = |\rho_s| = 1$ for $\theta \geq \theta_c$)? Find expressions for the phase angles of ρ_p and ρ_s (as functions of θ and θ_c) when the incidence angle θ is between θ_c and 90° .

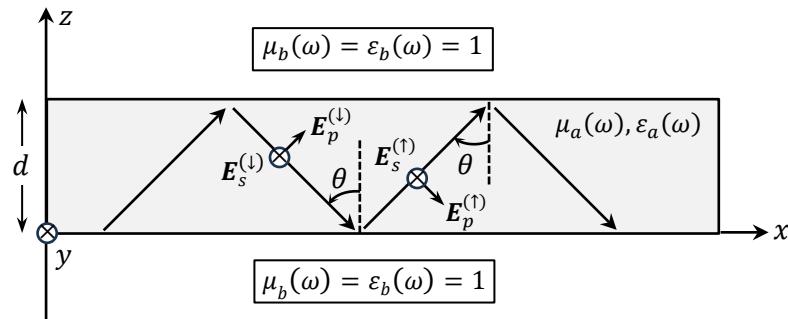
Problem 3) A transparent dielectric slab of thickness d and refractive index $n_a(\omega)$ serves as a waveguide to transport electromagnetic radiation of frequency ω along the x -axis. Consider a pair of plane-waves that are totally internally reflected at the boundaries between the slab and its surrounding medium of refractive index $n_b(\omega) = 1$. Assuming that $\mu_a = \mu_b = 1$, and that the critical angle of total internal reflection is $\theta_c = \arcsin(n_b/n_a)$, the phase angles of the Fresnel reflection coefficients ρ_p and ρ_s at either boundary when $\theta \geq \theta_c$ are given by

$$\varphi_p = \pi - 2 \arctan \left(\frac{\sqrt{\sin^2 \theta - \sin^2 \theta_c}}{(\sin^2 \theta_c) \cos \theta} \right), \quad \varphi_s = -2 \arctan \left(\frac{\sqrt{\sin^2 \theta - \sin^2 \theta_c}}{\cos \theta} \right).$$

The downward propagating wave (\downarrow) is reflected at the lower facet of the slab at $z = 0$, then propagates upward (\uparrow) to reach $z = d$, bounces back at the upper facet, then propagates downward (\downarrow) to reach $z = 0$ again. The accumulated phase due to up and down propagation is

$$k_z^{(\uparrow)} d + k_z^{(\downarrow)}(-d) = 2d(\omega/c)n_a(\omega) \cos \theta.$$

To this, one must add the acquired phase upon total internal reflection at the slab's facets (i.e., $2\varphi_p$ for p -light, or $2\varphi_s$ for s -light) in order to determine the total phase acquired in each roundtrip. Self-consistency then demands that the total accumulated phase in each roundtrip be an integer-multiple of 2π .



8 pts a) The self-consistency requirement restricts the allowed incidence angle θ inside the slab waveguide. Describe a graphical method that one could use to compute the allowed angles θ .

5 pts b) Each allowed angle θ corresponds to a different propagation mode within the waveguide. Explain why, in general, the waveguide modes for p -light differ from those for s -light.

Hint: Treat p -light and s -light separately. In each case, denote by $2\pi m$ an arbitrary integer-multiple of 2π . The acceptable values of the incidence angle θ in each case will depend on whether m is odd or even.