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Opti 501 Final Exam (12/16/2025) Time: 2 hours 
Please write your name and ID number on all the pages, then staple them together. 

Answer all the questions. 

Note: Bold symbols represent vectors and vector fields. 
 
Problem 1) The Lorentz oscillator model relates the local polarization 𝑷𝑷(𝑡𝑡) at any given point 𝒓𝒓 
within a linear, isotropic medium to the electric field 𝑬𝑬(𝑡𝑡) at the same point 𝒓𝒓 via the following 
second-order ordinary differential equation: 

 d2

d𝑡𝑡2
𝑷𝑷(𝑡𝑡) + 𝛾𝛾 d

d𝑡𝑡
𝑷𝑷(𝑡𝑡) + 𝜔𝜔0

2𝑷𝑷(𝑡𝑡) = 𝜀𝜀0𝜔𝜔𝑝𝑝
2𝑬𝑬(𝑡𝑡). 

Here, 𝛾𝛾 is the damping coefficient, 𝜔𝜔0 the resonance frequency, and 𝜔𝜔𝑝𝑝 the plasma 
frequency of the host medium. In this problem you are asked to solve the above equation for 
𝑷𝑷(𝑡𝑡) without using the complex notation. This requires that you write 𝑬𝑬(𝑡𝑡) = 𝑬𝑬0

′ cos(𝜔𝜔𝜔𝜔) +
𝑬𝑬0
″ sin(𝜔𝜔𝜔𝜔), where 𝑬𝑬0

′  and 𝑬𝑬0
″ are arbitrary real-valued vectors, while 𝜔𝜔 represents the oscillation 

frequency of the exciting electric field. You may begin by assuming the following form for the 
polarization: 

 𝑷𝑷(𝑡𝑡) = 𝑷𝑷0
′ cos(𝜔𝜔𝜔𝜔 + 𝜑𝜑0

′) + 𝑷𝑷0
″ sin(𝜔𝜔𝜔𝜔 + 𝜑𝜑0

″), 

then solve the differential equation to find expressions for 𝑷𝑷0
′ , 𝜑𝜑0

′, 𝑷𝑷0
″, and 𝜑𝜑0

″. Your final result 
should be the same as that obtained in the textbook with the aid of complex notation. 
Hint: cos𝑎𝑎 cos𝑏𝑏 − sin𝑎𝑎 sin𝑏𝑏 = cos(𝑎𝑎 + 𝑏𝑏)     and      sin𝑎𝑎 cos𝑏𝑏 + cos𝑎𝑎 sin𝑏𝑏 = sin(𝑎𝑎 + 𝑏𝑏). 

Problem 2) The Fresnel reflection coefficients for 𝑝𝑝- and 𝑠𝑠-polarized light at the interfacial 𝑥𝑥𝑥𝑥-
plane between the incidence medium (𝑎𝑎) and the transmittance medium (𝑏𝑏) are given by 

 𝜌𝜌𝑝𝑝 = 𝐸𝐸𝑥𝑥0
(r) 𝐸𝐸𝑥𝑥0

(i)� = 𝜀𝜀𝑎𝑎�𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏−(𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2 − 𝜀𝜀𝑏𝑏�𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎−(𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2

𝜀𝜀𝑎𝑎�𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏−(𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2 + 𝜀𝜀𝑏𝑏�𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎−(𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2
 
, 

 𝜌𝜌𝑠𝑠 = 𝐸𝐸𝑦𝑦0
(r) 𝐸𝐸𝑦𝑦0

(i)� = 𝜇𝜇𝑏𝑏�𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎−(𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2 − 𝜇𝜇𝑎𝑎�𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏−(𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2

𝜇𝜇𝑏𝑏�𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎−(𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2 + 𝜇𝜇𝑎𝑎�𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏−(𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2
 
. 

It is assumed here that the plane of incidence is 𝑥𝑥𝑥𝑥 (i.e., 𝑘𝑘𝑦𝑦 = 0), the angle of incidence is 𝜃𝜃 (see 
the figure below), the frequency of the incident plane-wave is 𝜔𝜔, and the incidence medium’s 
relative permeability 𝜇𝜇𝑎𝑎(𝜔𝜔) and relative permittivity 𝜀𝜀𝑎𝑎(𝜔𝜔) are real-valued and positive. 
 
a) Show that 𝜌𝜌𝑝𝑝 = 𝜌𝜌𝑠𝑠 at normal incidence (i.e., when 𝜃𝜃 = 0). 

b) Find 𝜌𝜌𝑝𝑝 and 𝜌𝜌𝑠𝑠 at grazing incidence (i.e., when 
𝜃𝜃 → 90°). Recalling that 𝜏𝜏𝑝𝑝 = 1 + 𝜌𝜌𝑝𝑝 and 𝜏𝜏𝑠𝑠 =
1 + 𝜌𝜌𝑠𝑠, your results should indicate that 𝜏𝜏𝑝𝑝 → 2 
and 𝜏𝜏𝑠𝑠 → 0 as 𝜃𝜃 → 90°. The result for 𝜏𝜏𝑠𝑠 makes 
sense, since one expects the beam transmitted 
into medium 𝑏𝑏 to vanish at grazing incidence. 
However, 𝜏𝜏𝑝𝑝 → 2 is counter-intuitive, since the 
transmitted beam appears to not have vanished 
at grazing incidence. How do you reconcile the 
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sensible expectation with the nonzero value of the Fresnel transmission coefficient 𝜏𝜏𝑝𝑝 at 
grazing incidence? 

c) Assuming that 𝜇𝜇𝑏𝑏 = 𝜇𝜇𝑎𝑎 and that 𝜀𝜀𝑏𝑏 is also real and positive, show that an incidence angle 𝜃𝜃 
exits at which 𝜌𝜌𝑝𝑝 = 0; this is the so-called Brewster’s angle 𝜃𝜃𝐵𝐵. Under the circumstances, 
show that 𝜃𝜃𝐵𝐵 = arctan(𝑛𝑛𝑏𝑏 𝑛𝑛𝑎𝑎⁄ ). 

d) Let 𝜇𝜇𝑏𝑏 = 𝜇𝜇𝑎𝑎, and also let the real and positive 𝜀𝜀𝑏𝑏 be less than 𝜀𝜀𝑎𝑎. In terms of 𝑛𝑛𝑎𝑎 and 𝑛𝑛𝑏𝑏, what 
is the expression of 𝜃𝜃𝑐𝑐 (i.e., the critical angle of total internal reflection, where |𝜌𝜌𝑝𝑝| = |𝜌𝜌𝑠𝑠| = 1 
for 𝜃𝜃 ≥ 𝜃𝜃𝑐𝑐)? Find expressions for the phase angles of 𝜌𝜌𝑝𝑝 and 𝜌𝜌𝑠𝑠 (as functions of 𝜃𝜃 and 𝜃𝜃𝑐𝑐) 
when the incidence angle 𝜃𝜃 is between 𝜃𝜃𝑐𝑐 and 90°. 

Problem 3) A transparent dielectric slab of thickness 𝑑𝑑 and refractive index 𝑛𝑛𝑎𝑎(𝜔𝜔) serves as a 
waveguide to transport electromagnetic radiation of frequency 𝜔𝜔 along the 𝑥𝑥-axis. Consider a 
pair of plane-waves that are totally internally reflected at the boundaries between the slab and its 
surrounding medium of refractive index 𝑛𝑛𝑏𝑏(𝜔𝜔) = 1. Assuming that 𝜇𝜇𝑎𝑎 = 𝜇𝜇𝑏𝑏 = 1, and that the 
critical angle of total internal reflection is 𝜃𝜃𝑐𝑐 = arcsin(𝑛𝑛𝑏𝑏 𝑛𝑛𝑎𝑎⁄ ), the phase angles of the Fresnel 
reflection coefficients 𝜌𝜌𝑝𝑝 and 𝜌𝜌𝑠𝑠 at either boundary when 𝜃𝜃 ≥ 𝜃𝜃𝑐𝑐 are given by 

 𝜑𝜑𝑝𝑝 = 𝜋𝜋 − 2 arctan ��sin
2 𝜃𝜃 − sin2 𝜃𝜃𝑐𝑐

(sin2 𝜃𝜃𝑐𝑐) cos𝜃𝜃
� ,              𝜑𝜑𝑠𝑠 = −2 arctan ��sin

2 𝜃𝜃 − sin2 𝜃𝜃𝑐𝑐
cos𝜃𝜃

�. 

The downward propagating wave (↓) is reflected at the lower facet of the slab at 𝑧𝑧 = 0, then 
propagates upward (↑) to reach 𝑧𝑧 = 𝑑𝑑, bounces back at the upper facet, then propagates 
downward (↓) to reach 𝑧𝑧 = 0 again. The accumulated phase due to up and down propagation is 

 𝑘𝑘𝑧𝑧
(↑)𝑑𝑑 + 𝑘𝑘𝑧𝑧

(↓)(−𝑑𝑑) = 2𝑑𝑑(𝜔𝜔 𝑐𝑐⁄ )𝑛𝑛𝑎𝑎(𝜔𝜔) cos 𝜃𝜃. 

To this, one must add the acquired phase upon total internal reflection at the slab’s facets 
(i.e., 2𝜑𝜑𝑝𝑝 for 𝑝𝑝-light, or 2𝜑𝜑𝑠𝑠 for 𝑠𝑠-light) in order to determine the total phase acquired in each 
roundtrip. Self-consistency then demands that the total accumulated phase in each roundtrip be 
an integer-multiple of 2𝜋𝜋. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a) The self-consistency requirement restricts the allowed incidence angle 𝜃𝜃 inside the slab 

waveguide. Describe a graphical method that one could use to compute the allowed angles 𝜃𝜃. 

b) Each allowed angle 𝜃𝜃 corresponds to a different propagation mode within the waveguide. 
Explain why, in general, the waveguide modes for 𝑝𝑝-light differ from those for 𝑠𝑠-light. 

Hint: Treat 𝑝𝑝-light and 𝑠𝑠-light separately. In each case, denote by 2𝜋𝜋𝑚𝑚 an arbitrary integer-multiple of 
2𝜋𝜋. The acceptable values of the incidence angle 𝜃𝜃 in each case will depend on whether 𝑚𝑚 is odd or even. 
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