Opti 501 Final Exam Solutions 12/16/2025

Problem 1) Substituting the suggested solution for P(t) in the governing differential equation, we
arrive at

—w?P} cos(wt + ¢}) — w?P} sin(wt + @.) — ywP, sin(wt + @) + ywP| cos(wt + ¢,
+w¢P; cos(wt + @) + WPy sin(wt + ¢p) = g,w>Ey cos(wt) + g,w>Eq sin(wt).

The above equation may now be split into two, one for P, and ¢,, the other for P and ¢, , as
follows:

[(wg — w?) cos(wt + ¢,) — yw sin(wt + )P, = g,w2E; cos(wt),

[(w§ — w?) sin(wt + ¢g) + yw cos(wt + ¢, )Py = g,wiEq sin(wt).

0<w=<w, - 0<Z¢<90°
140

w>w, - 90° < ¢ < 180°.

In the right triangle depicted above, the length of the hypotenuse is /(w2 — w2)? + (yw)?
and the angle ¢ is arctan[yw/(w? — w?)]. The above equations may thus be written as

\/(woz — w?)? 4 (yw)?[cos(¢) cos(wt + ¢@,) — sin(@) sin(wt + ¢,)]P; = ,wZE, cos(wt),

\/(wz — w?)? 4 (yw)?[cos(¢) sin(wt + @) + sin(p) cos(wt + @;)|P; = ,w?E; sin(wt).

The equations are further simplified with the aid of standard trigonometric identities, as follows:

\/(woz — w?)? + (yw)? cos(wt + @, + @) P, = eong(’) cos(wt),

\/(wz — w?)? 4+ (yw)?sin(wt + ¢, + @) Py = g,w?E{ sin(wt).
It is thus seen that ¢, = ¢, = —¢ and that, therefore,

80(1)12)
[(w3-w?2)2+(yw)2]*

P(t) = [E; cos(wt — @) + E; sin(wt — ¢)].
The above solution is in agreement with that obtained in the textbook using complex notation,

as shown below.
gow2 IYAY:
0Wp 0Wp

(-2 + (yw)?]% e-1#

P(t) = Re[ Eoe—iwt] - Re{ (E, + IE")e—la)t}

2 .
w§ — w? —iyw

|(p = arctan[yw/(w? — w?)] |
—Re{(E; +iE{)[cos(wt — @) —isin(wt — @)]}

80(4)p
T [(@E-0?2)? + (yw)2]*

&9 a)p

T [(w2-w?)? + (yw)?]*

[E; cos(wt — @) + E| sin(wt — ¢)].
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Problem 2) a) At normal incidence, we have 8 = 0 and, therefore, k,, = (w/c)n, sind = 0. We
will have

divide numerator and denominator by ./, €4ty Ep

_ £a+/pED — Epy Hata i N \/5b/#b,
P eqfupep + enhata  Jealta +en/1p

| divide numerator and denominator by p,up |

_ HbyHaga ~ HayBbep i Véa/ba =V Ep/Hp
EbyBagat BaUbED N E€a/Ma +ep/1p

Ps

It is seen that p, = p, at 6 = 0. (Alternatively, you may start by setting k, = 0, then write
pp = A/B and p; = C/D, then proceed to verify that AD = BC.)

b) At grazing incidence, where 8 = 90°, we have k,, = (w/c)n,sin 8 = (w/c)n,. Consequently,

pp = Eg(cr(;) _ €ayUbEp—Ha€a __ 1
p EJ(CIO) €ayUbEb—Hala ’

g®
_ Zyo _ _ HaJHbEb—HaEa __ -1
s E}(llg Ha+/UbEp—Ha€a '

In the case of s-polarization, we find 7, = 1 + p; = 0, which indicates the vanishing of the
transmitted beam, as expected. In the immediate vicinity of the interfacial xy-plane at z = 0, the
reflected beam propagates parallel to the incident beam, albeit with its y-oriented E-field flipped
to the —y direction. Similarly, the reflected beam’s H-field has flipped from +z to —z orientation.
Thus, there are no electric and magnetic fields parallel to the interface, nor any such fields
perpendicular to the interfacial plane.

In the case of p-polarization, the Fresnel reflection coefficient represents the E-field’s
amplitude along the x-axis. However, at grazing incidence, E, is essentially zero, for both the
incident and reflected beams. The equality of the incident and reflected Ey (i.e., the fact that p,,
approaches 1.0 as 8 — 90°) thus indicates the equality of the incident and reflected E,, albeit with
a sign change, as can be inferred from the provided figure in the statement of the problem. In other
words, it is the reflection coefficient for E, that approaches —1 as 8 — 90°. The H-field (always
aligned with the y-axis for p-light) similarly flips upon reflection. All in all, the total E, and the
total H,, immediately above the xy-plane at z = 0% vanish. Consequently, the E and H fields of
the transmitted plane-wave immediately below the interface at z = 0~ approach zero as 8 — 90°.

) pp=0 - ga\/.ubgb — (cky/w)* = Eb\/,ua&"a — (cky/w)?

- ezlupep — (Mg sin0)?] = g5l pqgq — (ng sin 6)?]

p

2 2 in2 0 — o2 2 P02
= EqlpEp — Eqla€q SINT O = €p Ha€a — EpHa€q SIN 6

. (e —€ )e
N Slnz 0 = allb . bﬂza b
Ua(eg — Sb)

. (Ug€q — UpED)E
-  cos?f =1—sin?g = -Fefa_Fbtbla
uq(eg — Sb)
(UpEq — ﬂagb)gb_

- tan®f =
(Haga — UpEp)Eq
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If up = pg, we will have tan? 0 = ppe,/pqeq = (n,/ng)?. Now, if &, happens to be real and
positive, there will exist a solution for 8. The Brewster angle will then be 8, = tan™1(n,/n,).

Digression. To explore the situations in which a Brewster’s angle might exist for s-polarized light,
we set pg to zero, then examine the conditions under which a solution for 8 might exist.

ps=0 - .ub\/.“aea — (cky/w)* = .ua\/.ubgb — (cky/w)?
- #g#aga(]‘ — sin? ) = ,Uczl(/lbgb — Ha€a sin? 6)

= (Upeq — Hagp)lp = Eq(f —pz)sin®6 —  sin*6 = (”?82:—”381’)’”’
Hp — Ha)€a
Clearly, it is possible to have a real-valued angle 6 that satisfies the above equation — hence
the feasibility of a Brewster’s angle for s-light— but not if y, = u,. In other words, u;, # p, is a
necessary condition for the existence of such an angle, provided that the values of u,, €4, Up, €p are
such that the above expression for sin? 8 turns out to yield a real number in the (0,1) interval.

d) Setting ck,/w = n, sin 6, we note that \/n? — (n, sin #)2 becomes imaginary when n sin 6
exceeds n,. The critical angle beyond which this change occurs is 6, = arcsin(n,/n,). Thus,
upon substituting n2 sin?(8,) for n2, and also setting u;, = p,, the simplified Fresnel reflection
coefficients become [6,/¢q = sin(8,) |

¥
gq(nZsin? 6, — nZsin2 0)” — gp(n2 —nZsin20)”  /sin2 6, — sin2 0 — (ep/€4) cos O
— = b
Pp gq(n% sin2 O, — nZsin2 0)% + gp(n3 —nZsin20)%  [sin? 6, — sin? 6 + (e /e4) cos O

_ (nZ-n2sin?0)” — (nZsin? 6, —nZsin?6)” _ cos@ —/sin2 O, —sin2 O
(nZ —nZsin20)* + (nZsin2 0, —n2sin20)%  cosH +/sin2 6, — sin2 6

Ps

At incidence angles 6 > 6, the term under the square root in the above expressions of p,, and
ps becomes negative, in which case we can write

i\/sin2 @ —sin2 0, — sin? 6, cos O sin? 6. cos 6 —i,/sin2 6 —sin2 6 . _1 (+/sin2 @ —sin2 @
= < £ =— < < = —exp —2itan™! (Y —2]|.

iy/sin2 @ —sin2 4, + sin2 6. cos 8 sin2 . cos @ +i,/sin% @ —sin2 4, (sin2 ;) cos 8

\/sin2 6 —sin2 6,
(sinZ ;) cos 8
in the case of s-polarized (or TE) incident light, we have
cos @ —iy/sin2 0 —sin2 6, . —1 (+/sin? 6 —sin? 6,
= =exp|—2itan” | —————||.
Ps cos 6 +i/sin2 0 —sin2 6, p [ cos 6
\/sin2 6 —sin2 6,

cosf@

Pp

Itis seenthat |p,| = 1and ¢, = m — 2 tan™" ( ) for all angles 8 > .. Similarly,

In this case, |ps| = 1 and ¢, = —2tan™? ( ) for all angles 8 > 6,.

Problem 3) a) Considering that k™ = (w/c)ng(w)(sin 6 X + cos 6 2), the sequence starting with
the incident E-field at the lower facet (i.e., at z = 0), followed by total internal reflection (TIR) at
the lower facet, propagation to the upper facet (at z = d), TIR at the upper facet, and, finally, a
downward propagation to the lower facet is listed below for p-polarized light.

i) E'(x,y,2=0,t) = onei(kxx+k$z—wt) = E, ei(kex-08) (1)
z=0

ii) ElNx,y,z =0,t) = p,E,,elx¥=00, (2)

3/4



i) El(ty,z=dt) = p,E,eilkertiiz-ot) = ppEoyeitrrtkid=wb), 3)
iv) El(x,y,z=d,t) = ngoxei("xx‘“k;d“"t), 4)
v) Ex,y,z=0,t) = pgonei(kxx+k;d—wt)eik§(—d) — ngoxei(kxxnk;d—wt)_ (5)

Self-consistency demands that the E-field after one roundtrip coincide with the E-field at the
starting point— aside from an integer-multiple of 27 phase-shift. Equating the E-field in step (v)
with that in step (i) and accounting for the possible 2mm phase-shift, we find

izkld i2mm

. T _ . _ .
Zonel(kxx+2kzd wt) — onel(kxx wt) gizmm —e

Pv

2
. . . . 2
N iy/sin2 8—sin2 @, — sin” 6. cos eiz(w/c)nad cosf _ eian
iy/sin2 8—sin2 @, + sinZ 6. cos

2
- pye

—'Sinzg_sngc> + 2(w/c)ngd cos 0 = 2mm

— 2m — 4 arctan
< sin? 6, cos 6

— arctan (_MM) = ¥ (w/c)n,d cos 0 — Yo(m — 1)m. (6)

sin2 @, cos 0

Depending on whether m (an integer) is odd or even, Eq.(6) can be further streamlined to yield

m odd: Jsin® 6 —sin* B _ tan[¥%(w/c)n,d cos 6], (7)

sinZ 6. cos O

. VsinZ 0 —sin? 6, 1
m even: 26,008 cot[¥2(w/c)n,d cos 0]. (8)

As for s-polarized light, a similar procedure yields the acceptable values of 6 as follows:

arctan (—W) = Y%(w/c)n,d cos 0 — Yomm. ©)

os6
Once again, depending on whether m is odd or even, we find

JETO SO _ o /Y cos 6], (10

m even:
cos @

m odd: Jsin?6 —sin®fe _ _ cot[¥2(w/c)n,d cos 0], (11)

cos@

Equation (7), (8), (10), and (11) can be solved graphically by plotting the left- and right-hand
sides of each equation versus 6 (over the interval 8, < 8 < 90°), then identifying the crossing
points of each pair of graphs.

b) The acceptable values of 8 are not necessarily the same for p-light and s-light. This is because
sin?(6,) appears in the denominator on the left-hand sides of Eqs.(7) and (8), but is absent from
Eqgs.(10) and (11). This indicates that the characteristics of the p-polarized (or TM) modes of a
slab waveguide generally differ from those of the s-polarized (or TE) modes, as the modes
associated with different polarizations will have different allowed values of 8 for any given set of
values of w, n,(w), and d. Also, for each polarization, the odd and even modes will have different
k, values and different E-field profiles (as well as H-field profiles) along the z-axis.
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