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Opti 501 Final Exam Solutions 12/16/2025 

Problem 1) Substituting the suggested solution for 𝑷𝑷(𝑡𝑡) in the governing differential equation, we 
arrive at 

 −𝜔𝜔2𝑷𝑷0
′ cos(𝜔𝜔𝜔𝜔 + 𝜑𝜑0

′) − 𝜔𝜔2𝑷𝑷0
″ sin(𝜔𝜔𝜔𝜔 + 𝜑𝜑0

″) − 𝛾𝛾𝛾𝛾𝑷𝑷0
′ sin(𝜔𝜔𝜔𝜔 + 𝜑𝜑0

′) + 𝛾𝛾𝛾𝛾𝑷𝑷0
″ cos(𝜔𝜔𝜔𝜔 + 𝜑𝜑0

″) 

 +𝜔𝜔0
2𝑷𝑷0

′ cos(𝜔𝜔𝜔𝜔 + 𝜑𝜑0
′) + 𝜔𝜔0

2𝑷𝑷0
″ sin(𝜔𝜔𝜔𝜔 + 𝜑𝜑0

″) = 𝜀𝜀0𝜔𝜔𝑝𝑝
2𝑬𝑬0

′ cos(𝜔𝜔𝜔𝜔) + 𝜀𝜀0𝜔𝜔𝑝𝑝
2𝑬𝑬0

″ sin(𝜔𝜔𝜔𝜔). 

The above equation may now be split into two, one for 𝑷𝑷0
′  and 𝜑𝜑0

′, the other for 𝑷𝑷0
″ and 𝜑𝜑0

″, as 
follows: 

 [(𝜔𝜔0
2 − 𝜔𝜔2) cos(𝜔𝜔𝜔𝜔 + 𝜑𝜑0

′) − 𝛾𝛾𝛾𝛾 sin(𝜔𝜔𝜔𝜔 + 𝜑𝜑0
′)]𝑷𝑷0

′ = 𝜀𝜀0𝜔𝜔𝑝𝑝
2𝑬𝑬0

′ cos(𝜔𝜔𝜔𝜔), 

 [(𝜔𝜔0
2 − 𝜔𝜔2) sin(𝜔𝜔𝜔𝜔 + 𝜑𝜑0

″) + 𝛾𝛾𝛾𝛾 cos(𝜔𝜔𝜔𝜔 + 𝜑𝜑0
″)]𝑷𝑷0

″ = 𝜀𝜀0𝜔𝜔𝑝𝑝
2𝑬𝑬0

″ sin(𝜔𝜔𝜔𝜔). 

 
 
 
 
 
 
 
 
 
 

In the right triangle depicted above, the length of the hypotenuse is �(𝜔𝜔0
2 − 𝜔𝜔2)2 + (𝛾𝛾𝛾𝛾)2 

and the angle 𝜑𝜑 is arctan[𝛾𝛾𝛾𝛾 (𝜔𝜔0
2 − 𝜔𝜔2)⁄ ]. The above equations may thus be written as 

 �(𝜔𝜔0
2 − 𝜔𝜔2)2 + (𝛾𝛾𝛾𝛾)2[cos(𝜑𝜑) cos(𝜔𝜔𝜔𝜔 + 𝜑𝜑0

′) − sin(𝜑𝜑) sin(𝜔𝜔𝜔𝜔 + 𝜑𝜑0
′)]𝑷𝑷0

′ = 𝜀𝜀0𝜔𝜔𝑝𝑝
2𝑬𝑬0

′ cos(𝜔𝜔𝜔𝜔), 

 �(𝜔𝜔0
2 − 𝜔𝜔2)2 + (𝛾𝛾𝛾𝛾)2[cos(𝜑𝜑) sin(𝜔𝜔𝜔𝜔 + 𝜑𝜑0

″) + sin(𝜑𝜑) cos(𝜔𝜔𝜔𝜔 + 𝜑𝜑0
″)]𝑷𝑷0

″ = 𝜀𝜀0𝜔𝜔𝑝𝑝
2𝑬𝑬0

″ sin(𝜔𝜔𝜔𝜔). 

The equations are further simplified with the aid of standard trigonometric identities, as follows: 

 �(𝜔𝜔0
2 − 𝜔𝜔2)2 + (𝛾𝛾𝛾𝛾)2 cos(𝜔𝜔𝜔𝜔 + 𝜑𝜑0

′ + 𝜑𝜑)𝑷𝑷0
′ = 𝜀𝜀0𝜔𝜔𝑝𝑝

2𝑬𝑬0
′ cos(𝜔𝜔𝜔𝜔), 

 �(𝜔𝜔0
2 − 𝜔𝜔2)2 + (𝛾𝛾𝛾𝛾)2 sin(𝜔𝜔𝜔𝜔 + 𝜑𝜑0

″ + 𝜑𝜑)𝑷𝑷0
″ = 𝜀𝜀0𝜔𝜔𝑝𝑝

2𝑬𝑬0
″ sin(𝜔𝜔𝜔𝜔). 

It is thus seen that 𝜑𝜑0
′ = 𝜑𝜑0

″ = −𝜑𝜑 and that, therefore, 

 𝑷𝑷(𝑡𝑡) = 𝜀𝜀0𝜔𝜔𝑝𝑝
2

[(𝜔𝜔0
2−𝜔𝜔2)2+(𝛾𝛾𝛾𝛾)2]½ [𝑬𝑬0

′ cos(𝜔𝜔𝜔𝜔 − 𝜑𝜑) + 𝑬𝑬0
″ sin(𝜔𝜔𝜔𝜔 − 𝜑𝜑)]. 

The above solution is in agreement with that obtained in the textbook using complex notation, 
as shown below. 

 𝑷𝑷(𝑡𝑡) = Re � 𝜀𝜀0𝜔𝜔𝑝𝑝
2

𝜔𝜔0
2 − 𝜔𝜔2 − i𝛾𝛾𝛾𝛾

𝑬𝑬0𝑒𝑒−i𝜔𝜔𝜔𝜔� = Re � 𝜀𝜀0𝜔𝜔𝑝𝑝
2

 [(𝜔𝜔0
2−𝜔𝜔2)2 + (𝛾𝛾𝛾𝛾)2]½ 𝑒𝑒−i𝜑𝜑

(𝑬𝑬0
′ + i𝑬𝑬0

″)𝑒𝑒−i𝜔𝜔𝜔𝜔� 

 = 𝜀𝜀0𝜔𝜔𝑝𝑝
2

[(𝜔𝜔0
2−𝜔𝜔2)2 + (𝛾𝛾𝛾𝛾)2]½ Re{(𝑬𝑬0

′ + i𝑬𝑬0
″)[cos(𝜔𝜔𝜔𝜔 − 𝜑𝜑) − i sin(𝜔𝜔𝜔𝜔 − 𝜑𝜑)]} 

 = 𝜀𝜀0𝜔𝜔𝑝𝑝
2

[(𝜔𝜔0
2−𝜔𝜔2)2 + (𝛾𝛾𝛾𝛾)2]½ [𝑬𝑬0

′ cos(𝜔𝜔𝜔𝜔 − 𝜑𝜑) + 𝑬𝑬0
″ sin(𝜔𝜔𝜔𝜔 − 𝜑𝜑)]. 

𝜔𝜔0
2 − 𝜔𝜔2 

𝛾𝛾𝛾𝛾 

𝜑𝜑 

0 ≤ 𝜔𝜔 ≤ 𝜔𝜔0     →      0 ≤ 𝜑𝜑 ≤ 90°, 

𝜔𝜔 > 𝜔𝜔0    →        90° < 𝜑𝜑 < 180°. 

𝜑𝜑 = arctan[𝛾𝛾𝛾𝛾 (𝜔𝜔0
2 − 𝜔𝜔2)⁄ ] 
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Problem 2) a) At normal incidence, we have 𝜃𝜃 = 0 and, therefore, 𝑘𝑘𝑥𝑥 = (𝜔𝜔 𝑐𝑐⁄ )𝑛𝑛𝑎𝑎 sin𝜃𝜃 = 0. We 
will have 

 𝜌𝜌𝑝𝑝 = 𝜀𝜀𝑎𝑎�𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏 − 𝜀𝜀𝑏𝑏�𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎
𝜀𝜀𝑎𝑎�𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏 + 𝜀𝜀𝑏𝑏�𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎

= �𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎⁄  − �𝜀𝜀𝑏𝑏 𝜇𝜇𝑏𝑏⁄
�𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎⁄  + �𝜀𝜀𝑏𝑏 𝜇𝜇𝑏𝑏⁄

 
, 

 𝜌𝜌𝑠𝑠 = 𝜇𝜇𝑏𝑏�𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎 − 𝜇𝜇𝑎𝑎�𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏
𝜇𝜇𝑏𝑏�𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎+ 𝜇𝜇𝑎𝑎�𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏

= �𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎⁄  − �𝜀𝜀𝑏𝑏 𝜇𝜇𝑏𝑏⁄
�𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎⁄  + �𝜀𝜀𝑏𝑏 𝜇𝜇𝑏𝑏⁄

 
. 

It is seen that 𝜌𝜌𝑝𝑝 = 𝜌𝜌𝑠𝑠 at 𝜃𝜃 = 0. (Alternatively, you may start by setting 𝑘𝑘𝑥𝑥 = 0, then write 
𝜌𝜌𝑝𝑝 = 𝐴𝐴 𝐵𝐵⁄  and 𝜌𝜌𝑠𝑠 = 𝐶𝐶 𝐷𝐷⁄ , then proceed to verify that 𝐴𝐴𝐴𝐴 = 𝐵𝐵𝐵𝐵.) 

b) At grazing incidence, where 𝜃𝜃 = 90°, we have 𝑘𝑘𝑥𝑥 = (𝜔𝜔 𝑐𝑐⁄ )𝑛𝑛𝑎𝑎 sin 𝜃𝜃 = (𝜔𝜔 𝑐𝑐⁄ )𝑛𝑛𝑎𝑎. Consequently, 

 𝜌𝜌𝑝𝑝 = 𝐸𝐸𝑥𝑥0
(r)

𝐸𝐸𝑥𝑥0
(i) = 𝜀𝜀𝑎𝑎�𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏−𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎 

𝜀𝜀𝑎𝑎�𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏−𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎 
= 1, 

 𝜌𝜌𝑠𝑠 =
𝐸𝐸𝑦𝑦0

(r)

𝐸𝐸𝑦𝑦0
(i) = −𝜇𝜇𝑎𝑎�𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏−𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎

𝜇𝜇𝑎𝑎�𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏−𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎
= −1. 

In the case of 𝑠𝑠-polarization, we find 𝜏𝜏𝑠𝑠 = 1 + 𝜌𝜌𝑠𝑠 = 0, which indicates the vanishing of the 
transmitted beam, as expected. In the immediate vicinity of the interfacial 𝑥𝑥𝑥𝑥-plane at 𝑧𝑧 = 0+, the 
reflected beam propagates parallel to the incident beam, albeit with its 𝑦𝑦-oriented 𝐸𝐸-field flipped 
to the −𝑦𝑦 direction. Similarly, the reflected beam’s 𝐻𝐻-field has flipped from +𝑧𝑧 to −𝑧𝑧 orientation. 
Thus, there are no electric and magnetic fields parallel to the interface, nor any such fields 
perpendicular to the interfacial plane. 

In the case of 𝑝𝑝-polarization, the Fresnel reflection coefficient represents the 𝐸𝐸-field’s 
amplitude along the 𝑥𝑥-axis. However, at grazing incidence, 𝐸𝐸𝑥𝑥 is essentially zero, for both the 
incident and reflected beams. The equality of the incident and reflected 𝐸𝐸𝑥𝑥 (i.e., the fact that 𝜌𝜌𝑝𝑝 
approaches 1.0 as 𝜃𝜃 → 90°) thus indicates the equality of the incident and reflected 𝐸𝐸𝑧𝑧, albeit with 
a sign change, as can be inferred from the provided figure in the statement of the problem. In other 
words, it is the reflection coefficient for 𝐸𝐸𝑧𝑧 that approaches −1 as 𝜃𝜃 → 90°. The 𝐻𝐻-field (always 
aligned with the 𝑦𝑦-axis for 𝑝𝑝-light) similarly flips upon reflection. All in all, the total 𝐸𝐸𝑧𝑧 and the 
total 𝐻𝐻𝑦𝑦 immediately above the 𝑥𝑥𝑥𝑥-plane at 𝑧𝑧 = 0+ vanish. Consequently, the 𝑬𝑬 and 𝑯𝑯 fields of 
the transmitted plane-wave immediately below the interface at 𝑧𝑧 = 0− approach zero as 𝜃𝜃 → 90°. 

c) 𝜌𝜌𝑝𝑝 = 0     →     𝜀𝜀𝑎𝑎�𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏 − (𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2 =  𝜀𝜀𝑏𝑏�𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎 − (𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2 

 →     𝜀𝜀𝑎𝑎2[𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏 − (𝑛𝑛𝑎𝑎 sin𝜃𝜃)2] = 𝜀𝜀𝑏𝑏2[ 𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎 − (𝑛𝑛𝑎𝑎 sin 𝜃𝜃)2] 

 →     𝜀𝜀𝑎𝑎2𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏 − 𝜀𝜀𝑎𝑎2𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎 sin2 𝜃𝜃 =  𝜀𝜀𝑏𝑏2 𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑏𝑏2𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎 sin2 𝜃𝜃 

 →     sin2 𝜃𝜃 =  (𝜀𝜀𝑎𝑎𝜇𝜇𝑏𝑏 − 𝜀𝜀𝑏𝑏 𝜇𝜇𝑎𝑎)𝜀𝜀𝑏𝑏
𝜇𝜇𝑎𝑎(𝜀𝜀𝑎𝑎2  − 𝜀𝜀𝑏𝑏

2)  

 →     cos2 𝜃𝜃 = 1 − sin2 𝜃𝜃 =  (𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎 − 𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏)𝜀𝜀𝑎𝑎
𝜇𝜇𝑎𝑎(𝜀𝜀𝑎𝑎2  − 𝜀𝜀𝑏𝑏

2)  

 →     tan2 𝜃𝜃 =  (𝜇𝜇𝑏𝑏𝜀𝜀𝑎𝑎 − 𝜇𝜇𝑎𝑎𝜀𝜀𝑏𝑏)𝜀𝜀𝑏𝑏
(𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎 − 𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏)𝜀𝜀𝑎𝑎

 
. 

divide numerator and denominator by 𝜇𝜇𝑎𝑎𝜇𝜇𝑏𝑏 

divide numerator and denominator by �𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏 
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If 𝜇𝜇𝑏𝑏 = 𝜇𝜇𝑎𝑎, we will have tan2 𝜃𝜃 = 𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏 𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎⁄ = (𝑛𝑛𝑏𝑏 𝑛𝑛𝑎𝑎⁄ )2. Now, if 𝜀𝜀𝑏𝑏 happens to be real and 
positive, there will exist a solution for 𝜃𝜃. The Brewster angle will then be 𝜃𝜃𝐵𝐵 = tan−1(𝑛𝑛𝑏𝑏 𝑛𝑛𝑎𝑎⁄ ). 

Digression. To explore the situations in which a Brewster’s angle might exist for 𝑠𝑠-polarized light, 
we set 𝜌𝜌𝑠𝑠 to zero, then examine the conditions under which a solution for 𝜃𝜃 might exist. 

 𝜌𝜌𝑠𝑠 = 0   →       𝜇𝜇𝑏𝑏�𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎 − (𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2 =  𝜇𝜇𝑎𝑎�𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏 − (𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ )2 

 →       𝜇𝜇𝑏𝑏2𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎(1− sin2 𝜃𝜃) =  𝜇𝜇𝑎𝑎2(𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏 − 𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎 sin2 𝜃𝜃) 

 →       (𝜇𝜇𝑏𝑏𝜀𝜀𝑎𝑎 − 𝜇𝜇𝑎𝑎𝜀𝜀𝑏𝑏)𝜇𝜇𝑏𝑏 = 𝜀𝜀𝑎𝑎(𝜇𝜇𝑏𝑏2  − 𝜇𝜇𝑎𝑎2) sin2 𝜃𝜃    →     sin2 𝜃𝜃 = (𝜇𝜇𝑏𝑏𝜀𝜀𝑎𝑎 − 𝜇𝜇𝑎𝑎𝜀𝜀𝑏𝑏)𝜇𝜇𝑏𝑏
(𝜇𝜇𝑏𝑏

2 − 𝜇𝜇𝑎𝑎2)𝜀𝜀𝑎𝑎
 
. 

Clearly, it is possible to have a real-valued angle 𝜃𝜃 that satisfies the above equation — hence 
the feasibility of a Brewster’s angle for 𝑠𝑠-light — but not if 𝜇𝜇𝑏𝑏 = 𝜇𝜇𝑎𝑎. In other words, 𝜇𝜇𝑏𝑏 ≠ 𝜇𝜇𝑎𝑎 is a 
necessary condition for the existence of such an angle, provided that the values of 𝜇𝜇𝑎𝑎, 𝜀𝜀𝑎𝑎, 𝜇𝜇𝑏𝑏 , 𝜀𝜀𝑏𝑏 are 
such that the above expression for sin2 𝜃𝜃 turns out to yield a real number in the (0,1) interval. 

d) Setting 𝑐𝑐𝑘𝑘𝑥𝑥 𝜔𝜔⁄ = 𝑛𝑛𝑎𝑎 sin 𝜃𝜃, we note that �𝑛𝑛𝑏𝑏2 − (𝑛𝑛𝑎𝑎 sin 𝜃𝜃)2 becomes imaginary when 𝑛𝑛𝑎𝑎 sin𝜃𝜃 
exceeds 𝑛𝑛𝑏𝑏. The critical angle beyond which this change occurs is 𝜃𝜃𝑐𝑐 = arcsin(𝑛𝑛𝑏𝑏 𝑛𝑛𝑎𝑎⁄ ). Thus, 
upon substituting 𝑛𝑛𝑎𝑎2 sin2(𝜃𝜃𝑐𝑐) for 𝑛𝑛𝑏𝑏2, and also setting 𝜇𝜇𝑏𝑏 = 𝜇𝜇𝑎𝑎, the simplified Fresnel reflection 
coefficients become 

 𝜌𝜌𝑝𝑝 = 𝜀𝜀𝑎𝑎(𝑛𝑛𝑎𝑎2 sin2 𝜃𝜃𝑐𝑐 − 𝑛𝑛𝑎𝑎2 sin2 𝜃𝜃)½ − 𝜀𝜀𝑏𝑏(𝑛𝑛𝑎𝑎2  − 𝑛𝑛𝑎𝑎2 sin2 𝜃𝜃)½

𝜀𝜀𝑎𝑎(𝑛𝑛𝑎𝑎2 sin2 𝜃𝜃𝑐𝑐 − 𝑛𝑛𝑎𝑎2 sin2 𝜃𝜃)½ + 𝜀𝜀𝑏𝑏(𝑛𝑛𝑎𝑎2  − 𝑛𝑛𝑎𝑎2 sin2 𝜃𝜃)½ = �sin2 𝜃𝜃𝑐𝑐 − sin2 𝜃𝜃 − (𝜀𝜀𝑏𝑏 𝜀𝜀𝑎𝑎⁄ ) cos𝜃𝜃
�sin2 𝜃𝜃𝑐𝑐 − sin2 𝜃𝜃 + (𝜀𝜀𝑏𝑏 𝜀𝜀𝑎𝑎⁄ ) cos𝜃𝜃

 
, 

 𝜌𝜌𝑠𝑠 = (𝑛𝑛𝑎𝑎2  − 𝑛𝑛𝑎𝑎2 sin2 𝜃𝜃)½ − (𝑛𝑛𝑎𝑎2 sin2 𝜃𝜃𝑐𝑐 − 𝑛𝑛𝑎𝑎2 sin2 𝜃𝜃)½

(𝑛𝑛𝑎𝑎2  − 𝑛𝑛𝑎𝑎2 sin2 𝜃𝜃)½ + (𝑛𝑛𝑎𝑎2 sin2 𝜃𝜃𝑐𝑐 − 𝑛𝑛𝑎𝑎2 sin2 𝜃𝜃)½ = cos𝜃𝜃 − �sin2 𝜃𝜃𝑐𝑐 − sin2 𝜃𝜃
cos𝜃𝜃 + �sin2 𝜃𝜃𝑐𝑐 − sin2 𝜃𝜃

 
. 

At incidence angles 𝜃𝜃 > 𝜃𝜃𝑐𝑐, the term under the square root in the above expressions of 𝜌𝜌𝑝𝑝 and 
𝜌𝜌𝑠𝑠 becomes negative, in which case we can write  

 𝜌𝜌𝑝𝑝 = i�sin2 𝜃𝜃 −sin2 𝜃𝜃𝑐𝑐 − sin2 𝜃𝜃𝑐𝑐 cos𝜃𝜃
i�sin2 𝜃𝜃 −sin2 𝜃𝜃𝑐𝑐 + sin2 𝜃𝜃𝑐𝑐 cos𝜃𝜃

= − sin2 𝜃𝜃𝑐𝑐 cos𝜃𝜃 − i�sin2 𝜃𝜃 −sin2 𝜃𝜃𝑐𝑐
sin2 𝜃𝜃𝑐𝑐 cos𝜃𝜃 + i�sin2 𝜃𝜃 −sin2 𝜃𝜃𝑐𝑐

= − exp �−2i tan−1 ��sin
2 𝜃𝜃 −sin2 𝜃𝜃𝑐𝑐

(sin2 𝜃𝜃𝑐𝑐) cos𝜃𝜃
��. 

It is seen that |𝜌𝜌𝑝𝑝| = 1 and 𝜑𝜑𝑝𝑝 = 𝜋𝜋 − 2 tan−1 ��sin
2 𝜃𝜃 −sin2 𝜃𝜃𝑐𝑐

(sin2 𝜃𝜃𝑐𝑐) cos𝜃𝜃
� for all angles 𝜃𝜃 ≥ 𝜃𝜃𝑐𝑐. Similarly, 

in the case of 𝑠𝑠-polarized (or TE) incident light, we have 

 𝜌𝜌𝑠𝑠 = cos𝜃𝜃 − i�sin2 𝜃𝜃 −sin2 𝜃𝜃𝑐𝑐
cos𝜃𝜃 + i�sin2 𝜃𝜃 −sin2 𝜃𝜃𝑐𝑐

= exp �−2i tan−1 ��sin
2 𝜃𝜃 −sin2 𝜃𝜃𝑐𝑐
cos𝜃𝜃

��. 

In this case, |𝜌𝜌𝑠𝑠| = 1 and 𝜑𝜑𝑠𝑠 = −2 tan−1 ��sin
2 𝜃𝜃 −sin2 𝜃𝜃𝑐𝑐
cos𝜃𝜃

� for all angles 𝜃𝜃 ≥ 𝜃𝜃𝑐𝑐. 

Problem 3) a) Considering that 𝒌𝒌↑↓ = (𝜔𝜔 𝑐𝑐⁄ )𝑛𝑛𝑎𝑎(𝜔𝜔)(sin𝜃𝜃 𝒙𝒙� ± cos 𝜃𝜃 𝒛𝒛�), the sequence starting with 
the incident 𝐸𝐸-field at the lower facet (i.e., at 𝑧𝑧 = 0), followed by total internal reflection (TIR) at 
the lower facet, propagation to the upper facet (at 𝑧𝑧 = 𝑑𝑑), TIR at the upper facet, and, finally, a 
downward propagation to the lower facet is listed below for 𝑝𝑝-polarized light. 

i) 𝐸𝐸𝑥𝑥↓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧 = 0, 𝑡𝑡) = 𝐸𝐸0𝑥𝑥𝑒𝑒i�𝑘𝑘𝑥𝑥𝑥𝑥+𝑘𝑘𝑧𝑧
↓𝑧𝑧−𝜔𝜔𝜔𝜔��

𝑧𝑧=0
= 𝐸𝐸0𝑥𝑥𝑒𝑒i(𝑘𝑘𝑥𝑥𝑥𝑥−𝜔𝜔𝜔𝜔), (1) 

ii) 𝐸𝐸𝑥𝑥↑(𝑥𝑥, 𝑦𝑦, 𝑧𝑧 = 0, 𝑡𝑡) = 𝜌𝜌𝑝𝑝𝐸𝐸0𝑥𝑥𝑒𝑒i(𝑘𝑘𝑥𝑥𝑥𝑥−𝜔𝜔𝜔𝜔), (2) 

𝜀𝜀𝑏𝑏 𝜀𝜀𝑎𝑎⁄ = sin2(𝜃𝜃𝑐𝑐) 
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iii) 𝐸𝐸𝑥𝑥↑(𝑥𝑥, 𝑦𝑦, 𝑧𝑧 = 𝑑𝑑, 𝑡𝑡) = 𝜌𝜌𝑝𝑝𝐸𝐸0𝑥𝑥𝑒𝑒i�𝑘𝑘𝑥𝑥𝑥𝑥+𝑘𝑘𝑧𝑧
↑𝑧𝑧−𝜔𝜔𝜔𝜔��

𝑧𝑧=𝑑𝑑
= 𝜌𝜌𝑝𝑝𝐸𝐸0𝑥𝑥𝑒𝑒i(𝑘𝑘𝑥𝑥𝑥𝑥+𝑘𝑘𝑧𝑧

↑𝑑𝑑−𝜔𝜔𝜔𝜔), (3) 

iv) 𝐸𝐸𝑥𝑥↓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧 = 𝑑𝑑, 𝑡𝑡) = 𝜌𝜌𝑝𝑝2𝐸𝐸0𝑥𝑥𝑒𝑒i�𝑘𝑘𝑥𝑥𝑥𝑥+𝑘𝑘𝑧𝑧
↑𝑑𝑑−𝜔𝜔𝜔𝜔�, (4) 

v) 𝐸𝐸𝑥𝑥↓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧 = 0, 𝑡𝑡) = 𝜌𝜌𝑝𝑝2𝐸𝐸0𝑥𝑥𝑒𝑒i�𝑘𝑘𝑥𝑥𝑥𝑥+𝑘𝑘𝑧𝑧
↑𝑑𝑑−𝜔𝜔𝜔𝜔�𝑒𝑒i𝑘𝑘𝑧𝑧↓(−𝑑𝑑) = 𝜌𝜌𝑝𝑝2𝐸𝐸0𝑥𝑥𝑒𝑒i�𝑘𝑘𝑥𝑥𝑥𝑥+2𝑘𝑘𝑧𝑧

↑𝑑𝑑−𝜔𝜔𝜔𝜔�. (5) 

Self-consistency demands that the 𝐸𝐸-field after one roundtrip coincide with the 𝐸𝐸-field at the 
starting point — aside from an integer-multiple of 2𝜋𝜋 phase-shift. Equating the 𝐸𝐸-field in step (v) 
with that in step (i) and accounting for the possible 2𝜋𝜋𝜋𝜋 phase-shift, we find  

 𝜌𝜌𝑝𝑝2𝐸𝐸0𝑥𝑥𝑒𝑒i�𝑘𝑘𝑥𝑥𝑥𝑥+2𝑘𝑘𝑧𝑧
↑𝑑𝑑−𝜔𝜔𝜔𝜔� = 𝐸𝐸0𝑥𝑥𝑒𝑒i(𝑘𝑘𝑥𝑥𝑥𝑥−𝜔𝜔𝜔𝜔)𝑒𝑒i2𝜋𝜋𝜋𝜋       →       𝜌𝜌𝑝𝑝2𝑒𝑒i2𝑘𝑘𝑧𝑧

↑𝑑𝑑 = 𝑒𝑒i2𝜋𝜋𝜋𝜋 

 →    �i�sin
2 𝜃𝜃−sin2 𝜃𝜃𝑐𝑐 − sin2 𝜃𝜃𝑐𝑐 cos𝜃𝜃

i�sin2 𝜃𝜃−sin2 𝜃𝜃𝑐𝑐 + sin2 𝜃𝜃𝑐𝑐 cos𝜃𝜃
�
2
𝑒𝑒i2(𝜔𝜔 𝑐𝑐⁄ )𝑛𝑛𝑎𝑎𝑑𝑑 cos𝜃𝜃 = 𝑒𝑒i2𝜋𝜋𝜋𝜋 

 →    2𝜋𝜋 − 4 arctan ��sin
2 𝜃𝜃−sin2 𝜃𝜃𝑐𝑐

sin2 𝜃𝜃𝑐𝑐 cos𝜃𝜃
� + 2(𝜔𝜔 𝑐𝑐⁄ )𝑛𝑛𝑎𝑎𝑑𝑑 cos 𝜃𝜃 = 2𝑚𝑚𝑚𝑚 

 →    arctan ��sin
2 𝜃𝜃−sin2 𝜃𝜃𝑐𝑐

sin2 𝜃𝜃𝑐𝑐 cos𝜃𝜃
� = ½(𝜔𝜔 𝑐𝑐⁄ )𝑛𝑛𝑎𝑎𝑑𝑑 cos 𝜃𝜃 − ½(𝑚𝑚− 1)𝜋𝜋. (6) 

Depending on whether 𝑚𝑚 (an integer) is odd or even, Eq.(6) can be further streamlined to yield 

 𝑚𝑚 odd: �sin2 𝜃𝜃 − sin2 𝜃𝜃𝑐𝑐
sin2 𝜃𝜃𝑐𝑐 cos𝜃𝜃

= tan[½(𝜔𝜔 𝑐𝑐⁄ )𝑛𝑛𝑎𝑎𝑑𝑑 cos 𝜃𝜃], (7) 

 𝑚𝑚 even: �sin2 𝜃𝜃 − sin2 𝜃𝜃𝑐𝑐
sin2 𝜃𝜃𝑐𝑐 cos𝜃𝜃

= − cot[½(𝜔𝜔 𝑐𝑐⁄ )𝑛𝑛𝑎𝑎𝑑𝑑 cos 𝜃𝜃]. (8) 

As for 𝑠𝑠-polarized light, a similar procedure yields the acceptable values of 𝜃𝜃 as follows: 

 arctan ��sin
2 𝜃𝜃 −sin2 𝜃𝜃𝑐𝑐
cos𝜃𝜃

� = ½(𝜔𝜔 𝑐𝑐⁄ )𝑛𝑛𝑎𝑎𝑑𝑑 cos 𝜃𝜃 − ½𝑚𝑚𝑚𝑚. (9) 

Once again, depending on whether 𝑚𝑚 is odd or even, we find 

 𝑚𝑚 even: �sin2 𝜃𝜃 − sin2 𝜃𝜃𝑐𝑐
cos𝜃𝜃

= tan[½(𝜔𝜔 𝑐𝑐⁄ )𝑛𝑛𝑎𝑎𝑑𝑑 cos 𝜃𝜃], (10) 

 𝑚𝑚 odd: �sin2 𝜃𝜃 − sin2 𝜃𝜃𝑐𝑐
cos𝜃𝜃

= − cot[½(𝜔𝜔 𝑐𝑐⁄ )𝑛𝑛𝑎𝑎𝑑𝑑 cos 𝜃𝜃], (11) 

Equation (7), (8), (10), and (11) can be solved graphically by plotting the left- and right-hand 
sides of each equation versus 𝜃𝜃 (over the interval 𝜃𝜃𝑐𝑐 < 𝜃𝜃 < 90°), then identifying the crossing 
points of each pair of graphs. 

b) The acceptable values of 𝜃𝜃 are not necessarily the same for 𝑝𝑝-light and 𝑠𝑠-light. This is because 
sin2(𝜃𝜃𝑐𝑐) appears in the denominator on the left-hand sides of Eqs.(7) and (8), but is absent from 
Eqs.(10) and (11). This indicates that the characteristics of the 𝑝𝑝-polarized (or TM) modes of a 
slab waveguide generally differ from those of the 𝑠𝑠-polarized (or TE) modes, as the modes 
associated with different polarizations will have different allowed values of 𝜃𝜃 for any given set of 
values of 𝜔𝜔,𝑛𝑛𝑎𝑎(𝜔𝜔), and 𝑑𝑑. Also, for each polarization, the odd and even modes will have different 
𝑘𝑘𝑥𝑥 values and different 𝐸𝐸-field profiles (as well as 𝐻𝐻-field profiles) along the 𝑧𝑧-axis. 
 


