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PhD Qualifying Exam, August 2025 
Opti 501, Day 1 
System of units: SI (or MKSA) 
 
a) Write Maxwell’s differential equations in their most complete form, including contributions 

from free-charge and free-current densities, as well as those from polarization and 
magnetization sources. Explain the meaning of each symbol that appears in these equations. 

b) Derive the charge-current continuity equation directly from Maxwell’s equations, and explain 
the meaning of this equation. Be brief but precise. 

c) Define the bound-electric-charge and bound-electric-current densities. Use these entities to 
eliminate the 𝑫𝑫 and 𝑯𝑯 fields from Maxwell’s equations. (In other words, rewrite Maxwell’s 
equations with the help of bound-charge and bound-current densities in such a way that only 
the 𝑬𝑬 and 𝑩𝑩 fields would appear in the equations.) 

d) Show that the bound-charge and bound-current densities of part (c) satisfy their own charge-
current continuity equation. 
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PhD Qualifying Exam Opti 501 August 2025 
 
Solution to Day 1 Problem) 

a) 𝜵𝜵 ∙ 𝑫𝑫(𝒓𝒓, 𝑡𝑡) = 𝜌𝜌free(𝒓𝒓, 𝑡𝑡), 

 𝜵𝜵 × 𝑯𝑯(𝒓𝒓, 𝑡𝑡) = 𝑱𝑱free(𝒓𝒓, 𝑡𝑡) + 𝜕𝜕𝑫𝑫(𝒓𝒓, 𝑡𝑡) 𝜕𝜕𝜕𝜕⁄ , 

 𝜵𝜵 × 𝑬𝑬(𝒓𝒓, 𝑡𝑡) = −𝜕𝜕𝑩𝑩(𝒓𝒓, 𝑡𝑡) 𝜕𝜕𝜕𝜕⁄ , 

 𝜵𝜵 ∙ 𝑩𝑩(𝒓𝒓, 𝑡𝑡) = 0. 

In these equations, 𝒓𝒓 = 𝑥𝑥𝒙𝒙� + 𝑦𝑦𝒚𝒚� + 𝑧𝑧𝒛𝒛� is an arbitrary point in space, while 𝑡𝑡 is an arbitrary 
instant in time. 𝑬𝑬 is the electric field, 𝑯𝑯 is the magnetic field, 𝑫𝑫 is the displacement, and 𝑩𝑩 is the 
magnetic induction. The fields are related to each other, to the permittivity and permeability of 
free space, εo and µo, and to polarization 𝑷𝑷 and magnetization 𝑴𝑴, as follows: 

 o( , ) ( , ) ( , ),t t tε= +D r E r P r  

 o( , ) ( , ) ( , ).t t tµ= +B r H r M r  

The sources of the electromagnetic fields (namely, 𝑬𝑬 and 𝑯𝑯) are the free charge-density 
𝜌𝜌free, free current-density 𝑱𝑱free, polarization 𝑷𝑷 (which is the density of electric dipole moments), 
and magnetization 𝑴𝑴 (the density of magnetic dipole moments). The operator 𝜕𝜕 𝜕𝜕𝑡𝑡⁄  represents 
partial differentiation with respect to time, 𝜵𝜵 ∙ is the divergence operator, and 𝜵𝜵 × is the curl 
operator. The divergence of a vector field such as 𝑫𝑫(𝒓𝒓, 𝑡𝑡), which turns out to be a scalar field, is 
defined as the integral of 𝑫𝑫(𝒓𝒓, 𝑡𝑡) over a small, closed surface, normalized by the enclosed 
volume. The curl of a vector field such as 𝑬𝑬(𝒓𝒓, 𝑡𝑡), which turns out to be another vector field, 
when projected onto the surface normal of a small surface element, yields the line integral of 
𝑬𝑬(𝒓𝒓, 𝑡𝑡) around the boundary of the surface element, normalized by the elemental surface area. 

b) To derive the charge-current continuity equation from Maxwell’s equations, apply the 
divergence operator to both sides of the second (Maxwell-Ampere) equation. The divergence of 
curl is always equal to zero and, therefore, the left-hand-side of the equation becomes 

( ) 0.⋅ × =H∇ ∇  The right-hand side, free ( ) ,t∂ ∂⋅ + ⋅J D /∇ ∇  thus becomes zero. Maxwell’s first 
equation (Gauss’s law) now allows one to replace ⋅D∇  with ρ free, yielding the continuity 
equation as free free/ 0.t∂ρ ∂⋅ + =J∇  This equation informs that the integrated free current over any 
closed surface is precisely balanced by changes in the electrical charge contained within the 
closed surface. If there is a net outflow of current, the charge within the closed surface must be 
decreasing, and if there is a net inflow of current, the charge within must be increasing. 

c) In the first of Maxwell’s equations, we substitute oε= +D E P  and obtain 
( )

o free o free o free bound( ) .eε ρ ε ρ ε ρ ρ⋅ + = → ⋅ = − ⋅ → ⋅ = +E P E P E∇ ∇ ∇ ∇  

The bound-charge density is thus seen to be ( )
bound( , ) ( , ).e t tρ = − ⋅r P r∇  

In the second Maxwell equation, we multiply both sides by µo, then add ×M∇  to both 
sides, in order to replace H with B through the identity o .µ= +B H M  We also use oε= +D E P  
on the right-hand side of the equation to get rid of D. We will have 
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The bound electric current-density is thus found to be ( ) 1
bound o/ .e t∂ ∂ µ−= + ×J P M∇  Since the 

remaining Maxwell equations do not contain 𝑫𝑫 and 𝑯𝑯, they remain unchanged. 

d) The divergence of ( )
bound

eJ is readily obtained, as follows: 
( ) 1
bound o( )/ ( ).e t∂ ∂ µ−⋅ = ⋅ + ⋅ ×J P M∇ ∇ ∇ ∇  

On the right-hand side of this equation, the divergence of the curl is always zero. Also the 
divergence of 𝑷𝑷(𝒓𝒓, 𝑡𝑡) is, by definition, ( )

bound .eρ−  Therefore, ( ) ( )
bound bound / 0.e e t∂ρ ∂⋅ + =J∇  This is the 

charge-current continuity equation for the bound electrical charge and current defined in part (c). 
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PhD Qualifying Exam, August 2025 
Opti 501, Day 2 
System of units: SI (or MKSA) 
 
Consider the flat interface between two linear, isotropic, homogeneous media specified by their 
relative permeability and permittivity at the incidence frequency, namely, (𝜇𝜇𝑎𝑎, 𝜀𝜀𝑎𝑎) for the 
medium above, and (𝜇𝜇𝑏𝑏, 𝜀𝜀𝑏𝑏) for the medium below the interface. These material parameters (i.e., 
𝜇𝜇𝑎𝑎, 𝜇𝜇𝑏𝑏, 𝜀𝜀𝑎𝑎, 𝜀𝜀𝑏𝑏) are assumed to be real-valued and positive. A homogeneous plane-wave of 
frequency 𝜔𝜔 arrives at the interfacial 𝑥𝑥𝑥𝑥-plane; the plane of incidence is 𝑥𝑥𝑥𝑥, the incidence angle 
is 𝜃𝜃, and the 𝐸𝐸-field components of the incident beam are 𝑬𝑬𝑝𝑝

(i) and 𝑬𝑬𝑠𝑠
(i), as indicated in the figure. 

The 𝐸𝐸-field components of the transmitted beam, also a homogeneous plane-wave, are 𝑬𝑬𝑝𝑝
(t) and 

𝑬𝑬𝑠𝑠
(t), and the angle between the transmitted 𝑘𝑘-vector and the surface-normal is 𝜃𝜃′, as shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a) Invoking the dispersion relation 𝒌𝒌 ∙ 𝒌𝒌 = (𝜔𝜔 𝑐𝑐⁄ )2𝜇𝜇(𝜔𝜔)𝜀𝜀(𝜔𝜔), write expressions for the 𝑘𝑘-vectors 

of the incident and transmitted plane-waves shown in the above figure. (𝑐𝑐 = 1 �𝜇𝜇0𝜀𝜀0⁄  is the 
speed of light in vacuum.) 

b) Invoking Maxwell’s boundary conditions, explain why the transmitted wave has the same 
frequency 𝜔𝜔 as the incident wave. What do these boundary conditions reveal about the 
relation between 𝜃𝜃 and 𝜃𝜃′? 

c) Use Maxwell’s third equation, 𝜵𝜵 × 𝑬𝑬 = −𝜕𝜕𝑩𝑩 𝜕𝜕𝜕𝜕⁄ , to determine both the incident and the 
transmitted 𝐻𝐻-field components. (As usual, 𝑩𝑩 = 𝜇𝜇0𝜇𝜇(𝜔𝜔)𝑯𝑯; you may use the impedance of 
free space, 𝑍𝑍0 = �𝜇𝜇0 𝜀𝜀0⁄ , to simplify the equations.) 

d) Find the conditions under which the reflected beam for the 𝑝𝑝-polarized incident light vanishes. 

e) Find the conditions under which the reflected beam for the 𝑠𝑠-polarized incident light vanishes. 
 
  

𝜇𝜇𝑎𝑎, 𝜀𝜀𝑎𝑎 𝑬𝑬𝑝𝑝
(i) 

𝑥𝑥 

𝜇𝜇𝑏𝑏, 𝜀𝜀𝑏𝑏 

𝑬𝑬𝑝𝑝
(t) 

∙ 𝑬𝑬𝑠𝑠
(i) 

∙ 
𝑬𝑬𝑠𝑠

(t) 

𝑧𝑧 

× 𝑦𝑦 

𝜃𝜃 

𝜃𝜃′ 

𝒌𝒌(t) 

𝒌𝒌(i) 
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PhD Qualifying Exam Opti 501 August 2025 
 
Solution to Day 2 Problem) 

a) |𝒌𝒌(i)| = (𝜔𝜔 𝑐𝑐⁄ )�𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎    →   𝒌𝒌(i) = (𝜔𝜔 𝑐𝑐⁄ )�𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎(sin𝜃𝜃 𝒙𝒙� − cos 𝜃𝜃 𝒛𝒛�). (1) 

 |𝒌𝒌(t)| = (𝜔𝜔 𝑐𝑐⁄ )�𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏    →   𝒌𝒌(t) = (𝜔𝜔 𝑐𝑐⁄ )�𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏(sin𝜃𝜃′ 𝒙𝒙� − cos𝜃𝜃′ 𝒛𝒛�). (2) 

b) Maxwell’s boundary conditions require that 𝑬𝑬∥,𝑯𝑯∥,𝑫𝑫⊥, and 𝑩𝑩⊥ be continuous at the interface. 
Each field has a phase-factor 𝑒𝑒i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔), which reduces to 𝑒𝑒i(𝑘𝑘𝑥𝑥𝑥𝑥+𝑘𝑘𝑦𝑦𝑦𝑦 − 𝜔𝜔𝜔𝜔) when the interfacial 
plane is chosen to be the 𝑥𝑥𝑥𝑥-plane at 𝑧𝑧 = 0. Since the continuity conditions pertain to the fields 
immediately above and immediately below the interface at all times 𝑡𝑡, the frequencies of the 
incident, reflected, and transmitted beams must be identical. In particular, the frequency of the 
transmitted beam must be the same as the frequency 𝜔𝜔 of the incident beam. 

Similarly, the continuity conditions are satisfied for all values of the coordinate 𝑦𝑦 at the 
interfacial plane if and only if the 𝑘𝑘𝑦𝑦 values of the incident, reflected, and transmitted beams are 
identical. Since our choice of 𝑥𝑥𝑥𝑥 as the plane of incidence automatically sets the 𝑘𝑘𝑦𝑦 component 
of 𝒌𝒌(i) to zero, we conclude that the 𝑘𝑘𝑦𝑦 components of 𝒌𝒌(r) and 𝒌𝒌(t) must be zero as well. 

Finally, the satisfaction of the boundary conditions for all values of the coordinate 𝑥𝑥 at the 
interfacial plane requires that the 𝑘𝑘𝑥𝑥 values of the incident, reflected, and transmitted beams be 
identical. In particular, setting 𝑘𝑘𝑥𝑥

(i) = 𝑘𝑘𝑥𝑥
(t), we find from Eqs.(1) and (2) that the angles 𝜃𝜃 and 𝜃𝜃′ 

must be related as follows: 

 (𝜔𝜔 𝑐𝑐⁄ )�𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎 sin𝜃𝜃 = (𝜔𝜔 𝑐𝑐⁄ )�𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏 sin𝜃𝜃′     →      sin𝜃𝜃′ = �(𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎) (𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏)⁄ sin𝜃𝜃. (3) 

c) From 𝜵𝜵 × 𝑬𝑬0𝑒𝑒i(𝒌𝒌 ∙ 𝒓𝒓 – 𝜔𝜔𝜔𝜔) = −(𝜕𝜕 𝜕𝜕𝜕𝜕⁄ )�𝜇𝜇0𝜇𝜇(𝜔𝜔)𝑯𝑯0𝑒𝑒i(𝒌𝒌 ∙ 𝒓𝒓 – 𝜔𝜔𝜔𝜔)� we find 𝒌𝒌 × 𝑬𝑬0 = 𝜇𝜇0𝜇𝜇(𝜔𝜔)𝜔𝜔𝑯𝑯0, 
which leads to (𝜔𝜔 𝑐𝑐⁄ )�𝜇𝜇(𝜔𝜔)𝜀𝜀(𝜔𝜔)𝜿𝜿� × 𝑬𝑬0 = 𝜇𝜇0𝜇𝜇(𝜔𝜔)𝜔𝜔𝑯𝑯0 and, therefore, 𝑯𝑯0 = �𝜀𝜀 𝜇𝜇⁄ 𝜿𝜿� × 𝑬𝑬0 𝑍𝑍0� . 
For the incident plane-wave, this equation yields 

 𝑯𝑯0
(i) = �𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎⁄ 𝜿𝜿�(i) × 𝑬𝑬0

(i) 𝑍𝑍0�  

 = 𝑍𝑍0−1�𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎⁄ (sin𝜃𝜃 𝒙𝒙� − cos 𝜃𝜃 𝒛𝒛�) × �𝐸𝐸𝑝𝑝
(i) cos𝜃𝜃 𝒙𝒙� + 𝐸𝐸𝑠𝑠

(i)𝒚𝒚� + 𝐸𝐸𝑝𝑝
(i) sin𝜃𝜃 𝒛𝒛�� 

 = 𝑍𝑍0−1�𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎⁄ �𝐸𝐸𝑠𝑠
(i) cos 𝜃𝜃 𝒙𝒙� − 𝐸𝐸𝑝𝑝

(i)(sin2 𝜃𝜃 + cos2 𝜃𝜃)𝒚𝒚� + 𝐸𝐸𝑠𝑠
(i) sin𝜃𝜃 𝒛𝒛�� 

 = 𝑍𝑍0−1�𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎⁄ �𝐸𝐸𝑠𝑠
(i) cos 𝜃𝜃 𝒙𝒙� − 𝐸𝐸𝑝𝑝

(i)𝒚𝒚� + 𝐸𝐸𝑠𝑠
(i) sin𝜃𝜃 𝒛𝒛��. (4) 

Similarly, for the transmitted plane-wave, we will have 

 𝑯𝑯0
(t) = �𝜀𝜀𝑏𝑏 𝜇𝜇𝑏𝑏⁄ 𝜿𝜿�(t) × 𝑬𝑬0

(t) 𝑍𝑍0� = 𝑍𝑍0−1�𝜀𝜀𝑏𝑏 𝜇𝜇𝑏𝑏⁄ �𝐸𝐸𝑠𝑠
(t) cos𝜃𝜃′ 𝒙𝒙� − 𝐸𝐸𝑝𝑝

(t)𝒚𝒚� + 𝐸𝐸𝑠𝑠
(t) sin𝜃𝜃′ 𝒛𝒛��. (5) 

d) In the absence of a reflected beam, the continuity conditions for 𝑬𝑬∥ and 𝑯𝑯∥ of 𝑝𝑝-polarized 
light become 
 𝐸𝐸𝑥𝑥

(i) = 𝐸𝐸𝑥𝑥
(t)     →      𝐸𝐸𝑝𝑝

(i) cos 𝜃𝜃 = 𝐸𝐸𝑝𝑝
(t) cos 𝜃𝜃′. (6) 

 𝐻𝐻𝑦𝑦
(i) = 𝐻𝐻𝑦𝑦

(t)    →      �𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎⁄ 𝐸𝐸𝑝𝑝
(i) = �𝜀𝜀𝑏𝑏 𝜇𝜇𝑏𝑏⁄ 𝐸𝐸𝑝𝑝

(t). (7) See Eqs.(4) and (5) 
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Substituting for 𝐸𝐸𝑝𝑝
(t) from Eq.(7) into Eq.(6), and recalling the relation between 𝜃𝜃 and 𝜃𝜃′ as 

given by Eq.(3), we find 

 𝐸𝐸𝑝𝑝
(i)√1 − sin2 𝜃𝜃 = �𝜇𝜇𝑏𝑏𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎𝜀𝜀𝑏𝑏⁄ 𝐸𝐸𝑝𝑝

(i)√1 − sin2 𝜃𝜃′ 

 →   1 − sin2 𝜃𝜃 = (𝜇𝜇𝑏𝑏𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎𝜀𝜀𝑏𝑏⁄ )[1 − (𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎 𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏⁄ ) sin2 𝜃𝜃]     →    sin𝜃𝜃 = �1 − (𝜇𝜇𝑏𝑏𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎𝜀𝜀𝑏𝑏⁄ )
1 − (𝜀𝜀𝑎𝑎 𝜀𝜀𝑏𝑏⁄ )2  

. (8) 

If 𝜇𝜇𝑎𝑎 = 𝜇𝜇𝑏𝑏, we will have sin𝜃𝜃 = �𝜀𝜀𝑏𝑏 (𝜀𝜀𝑎𝑎 + 𝜀𝜀𝑏𝑏)⁄ , which leads to cos 𝜃𝜃 = �𝜀𝜀𝑎𝑎 (𝜀𝜀𝑎𝑎 + 𝜀𝜀𝑏𝑏)⁄  and 
tan𝜃𝜃 = �𝜀𝜀𝑏𝑏 𝜀𝜀𝑎𝑎⁄ . But this may also be written as tan𝜃𝜃 = �𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏 𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎⁄ = 𝑛𝑛𝑏𝑏 𝑛𝑛𝑎𝑎⁄ , which is the 
well-known result associated with 𝑝𝑝-light incidence at Brewster’s angle when 𝜇𝜇𝑎𝑎 = 𝜇𝜇𝑏𝑏. 

e) In the case of an 𝑠𝑠-polarized incident beam, the reflected beam vanishes when the following 
continuity conditions for 𝑬𝑬∥ and 𝑯𝑯∥ are satisfied: 

 𝐸𝐸𝑦𝑦
(i) = 𝐸𝐸𝑦𝑦

(t)    →     𝐸𝐸𝑠𝑠
(i) = 𝐸𝐸𝑠𝑠

(t). (9) 

 𝐻𝐻𝑥𝑥
(i) = 𝐻𝐻𝑥𝑥

(t)   →     �𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎⁄ 𝐸𝐸𝑠𝑠
(i) cos𝜃𝜃 = �𝜀𝜀𝑏𝑏 𝜇𝜇𝑏𝑏⁄ 𝐸𝐸𝑠𝑠

(t) cos 𝜃𝜃′. (10) 

Substituting for 𝐸𝐸𝑠𝑠
(t) from Eq.(9) into Eq.(10), and recalling the relation between 𝜃𝜃 and 𝜃𝜃′ as 

given by Eq.(3), we find 

 (𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎⁄ )(1− sin2 𝜃𝜃) = (𝜀𝜀𝑏𝑏 𝜇𝜇𝑏𝑏⁄ )(1 − sin2 𝜃𝜃′) 

 →   (𝜇𝜇𝑏𝑏𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎𝜀𝜀𝑏𝑏⁄ )(1 − sin2 𝜃𝜃) = 1 − (𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎 𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏⁄ ) sin2 𝜃𝜃    →    sin𝜃𝜃 = �𝜇𝜇𝑏𝑏(𝜇𝜇𝑎𝑎𝜀𝜀𝑏𝑏−𝜇𝜇𝑏𝑏𝜀𝜀𝑎𝑎)
(𝜇𝜇𝑎𝑎2  − 𝜇𝜇𝑏𝑏

2)𝜀𝜀𝑎𝑎
 
. (11) 

At optical frequencies, ordinary materials have 𝜇𝜇𝑎𝑎 = 𝜇𝜇𝑏𝑏 ≅ 1, which does not allow for the 
existence of a Brewster’s angle for 𝑠𝑠-polarized light. However, whenever 𝜇𝜇𝑎𝑎 ≠ 𝜇𝜇𝑏𝑏, if Eq.(11) 
yields an acceptable value for the angle 𝜃𝜃 (i.e., an angle in the range of 0° to 90°), then such a 
Brewster angle for 𝑠𝑠-light would exist. If it so happens that 𝜀𝜀𝑎𝑎 = 𝜀𝜀𝑏𝑏 while 𝜇𝜇𝑎𝑎 ≠ 𝜇𝜇𝑏𝑏, we will have 
sin𝜃𝜃 = �𝜇𝜇𝑏𝑏 (𝜇𝜇𝑎𝑎 + 𝜇𝜇𝑏𝑏)⁄ , which leads to cos 𝜃𝜃 = �𝜇𝜇𝑎𝑎 (𝜇𝜇𝑎𝑎 + 𝜇𝜇𝑏𝑏)⁄  and tan 𝜃𝜃 = �𝜇𝜇𝑏𝑏 𝜇𝜇𝑎𝑎⁄ . Once again, 
this may be written as tan𝜃𝜃 = �𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏 𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎⁄ = 𝑛𝑛𝑏𝑏 𝑛𝑛𝑎𝑎⁄ , as was the case for 𝑝𝑝-polarized light. 
 

See Eqs.(4) and (5) 


