Opti 501

Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1) Inside a transparent, linear, isotropic, and homogeneous medium of refractive index $n(\omega)$, two linearly-polarized plane-waves co-propagate along the *x*-axis. The *E*-field amplitudes

and frequencies of the two waves are $(E_{y1}e^{i\varphi_1}, \omega_1)$ and $(E_{y2}e^{i\varphi_2}, \omega_2)$. The center frequency is $\omega_c = \frac{1}{2}(\omega_1 + \omega_2)$ and the difference frequency is $\Delta \omega = \omega_2 - \omega_1$. Let the refractive indices at the two frequencies be $n_1 = n(\omega_1)$ and $n_2 = n(\omega_2)$. Define $E_s = \frac{1}{2}(E_{y1} + E_{y2})$ and $E_d = \frac{1}{2}(E_{y1} - E_{y2})$. Also, assuming that

 $\Delta \omega$ is sufficiently small, define the group refractive index n_g at the center frequency ω_c as $n_g(\omega_c) = (\omega_2 n_2 - \omega_1 n_1)/\Delta \omega \cong d[\omega n(\omega)]/d\omega|_{\omega=\omega_c}$.

- 4 pts a) Write an expression for the total (real-valued) electric field E(r, t) as a function of x and t.
- 6 pts b) Combine the two *E*-fields to obtain a pair of beat signals with amplitudes $2E_s$ and $2E_d$.
- 3 pts c) Identify the envelopes and carriers of the two (co-propagating) beat signals.

Hint: $\cos a + \cos b = 2\cos[\frac{1}{2}(a+b)]\cos[\frac{1}{2}(a-b)]$ and $\cos a - \cos b = -2\sin[\frac{1}{2}(a+b)]\sin[\frac{1}{2}(a-b)]$. Note that $E_{y_1} = E_s + E_d$ and $E_{y_2} = E_s - E_d$. You may also assume that $\frac{1}{2}(\omega_1 n_1 + \omega_2 n_2) \cong \omega_c n(\omega_c) = \omega_c n_c$.

Problem 2) A homogeneous, monochromatic, and linearly-polarized plane-wave of frequency ω arrives at normal incidence at the interface between a transparent medium *a* and an absorptive medium *b*. The optical parameters of the incidence and transmittance media are $\mu_a(\omega)$, $\varepsilon_a(\omega)$ and $\mu_b(\omega)$, $\varepsilon_b(\omega)$, respectively. You may assume that $\rho_{\text{free}}(\mathbf{r}, t) = 0$, $\mathbf{J}_{\text{free}}(\mathbf{r}, t) = 0$, and $E_v^{(i)} = 0$.

2 pts a) Invoke the generalized Snell's law and the dispersion relation to identify $\boldsymbol{k}^{(i)}, \boldsymbol{k}^{(r)}, \text{ and } \boldsymbol{k}^{(t)}$. 2 pts b) Use Maxwell's first equation, $\boldsymbol{\nabla} \cdot \boldsymbol{D}(\boldsymbol{r}, t) = \rho_{\text{free}}(\boldsymbol{r}, t)$, to show that $E_z^{(i)} = E_z^{(r)} = E_z^{(t)} = 0$.

- 3 pts c) Use Maxwell's third equation, $\nabla \times E(\mathbf{r},t) = -\partial \mathbf{B}(\mathbf{r},t)/\partial t$, to identify the magnetic field amplitudes $H_0^{(i)}$, $H_0^{(r)}$, and $H_0^{(t)}$.
- 3 pts d) Write the continuity conditions for the tangential E and H fields at the boundary at z = 0. Proceed to solve these equations to find the Fresnel reflection and transmission coefficients.
- 3 pts e) Write the complete expressions of the E and H fields for the reflected and transmitted beams.
- 1 pt f) Let ε_b(ω) be a complex number and μ_b(ω) a large positive number. Examine the boundary conditions for E_x and H_y immediately above and immediately below the interface at z = 0[±]. Explain how the presence of a surface-electric-current or a surface-magnetic-current might affect the continuity of the tangential H-field or that of the tangential E-field at the boundary.

Problem 3) A monochromatic plane-wave of frequency ω arrives at oblique incidence at the interface between a transparent medium *a* and an absorptive medium *b*. The optical parameters of the incidence and transmittance media are $\mu_a(\omega)$, $\varepsilon_a(\omega)$ and $\mu_b(\omega)$, $\varepsilon_b(\omega)$, respectively. The incident plane-wave is homogeneous, the plane of incidence is *xz*, the incidence angle is θ , and the incident *E*-field amplitudes || and \perp to the plane of incidence are E_p and E_s , respectively.

- 3 pts a) Invoke the generalized Snell's law and the dispersion relation to relate $k_z^{(r)}$ and $k_z^{(t)}$ to $k_x^{(i)} = (\omega/c)n_a(\omega)\sin\theta$, to the frequency ω , and to the relevant material parameters.
- 3 pts b) Use Maxwell's first equation, $\nabla \cdot D(\mathbf{r}, t) = \rho_{\text{free}}(\mathbf{r}, t)$, to relate the z-component of the *E*-field of each plane-wave to the corresponding k_x , k_z , E_x and E_y components. (Hint: Assume that $\rho_{\text{free}} = 0$, and recall that $\mathbf{D} = \varepsilon_0 \varepsilon(\omega) \mathbf{E}$, with $\varepsilon(\omega)$ incorporating the contributions of free as well as bound electrons.)
- 4 pts c) Invoke Maxwell's third equation, $\nabla \times E(\mathbf{r},t) = -\partial B(\mathbf{r},t)/\partial t$, to express the *H*-field amplitudes of the incident, reflected, and transmitted beams in terms of the corresponding *k*-vectors and the *E*-field amplitudes (as well as other relevant parameters).
- 3 pts d) Write the boundary conditions pertaining to the continuity of the tangential E and H fields at the interfacial xy-plane at z = 0. Show that these four equations split into two independent sets of two equations each, one for the *p*-polarized light, the other for the *s*-polarized light.