Opti 501 Final Exam Solutions 12/17/2024

Problem 1) a) The two E-fields are linearly polarized along the y-axis and co-propagate along the
x-axis. Noting that E,,, = E; + E; and E,, = E; — E;, we write

E(rt) = Eyl COS[(n1w1/C)x —wt+ (p1] y+ Eyz COS[(nzwz/C)x —w,t + (pz] y
= {(E; + E,) cos[(n,w,/c)x — w,t + @] + (E; — E,) cos[(n,w,/c)x — w,t + @,]}Y.

b) Using the trigonometric identities, we combine the two fields with amplitudes E,, and also the
two fields with amplitudes E,, to arrive at

E(r,t) = 2E; cos[Ya(w,n, + w,n,)(x/c) — Yo(w, + w,)t + Ya(@, + ¢,)]
x cos[Ya(w,n, — w,n,)(x/c) — Yo(w, — w,)t + Yo(, — @,)]y
—2E, sin[%(w,n, + w,n,)(x/c) — Yo(w, + w,)t + %(@, + ¢,)]
x sin[Y2(w,n, — w,n,)(x/c) — Yo(w, — w,)t + %(p, — ,)]1y
= (E,, + E,;) cos[(w.n./c)x — w.t + Y2(p, + ¢,)]
X cos[—l/zng(a)c)(Aa))(x/c) + % (Aw)t + Y2 (@, — (pz)] y
—(E,, — E,,) sin[(w.n./c)x — w.t + Y2(p, + ¢,)]
X sin[—l/zng(wc)(Aw)(x/c) + ¥ (Aw)t + Ya(p, — <pz)] y.

c) The pair of beat signals may be further streamlined, as follows:

carrier 1: frequency = w,,

E(rl t) = (Eyl + Eyz) COS{(wch/C) [x - (C/nc)t] + ]/2(<p1 + (pz)} - phase Velocity = C/n(wc)_

envelope 1: frequency = %L Aw,

X cosi¥en (w)(Aw/c)[x — (c/n)t] — Y2(@, — @,){Y < group velocity = ¢/n,(w,),
9 g g

amplitude = E,,, + E,,.

carrier 2: frequency = w,,
phase velocity = ¢/n(w,).

+(Ey1 - Eyz) Sin{(wcnc/c) [x - (C/nc)t] + 1/2((/)1 + (pz)}

. ) - envelope 2: frequency = %2Aw,
X sm{l/zng(wc)(Aw/c) [x — (C/ng)t] — Y(p, — ‘pz)} Y. < group velocity = c/ny(w,),
amplitude = E,; — E,,.

Note that the peak envelope of the first beat signal coincides with the zero of the envelope of
the second beat signal and vice-versa. Also, in the special case where E,,, = E,, the second beat

signal disappears.

Problem 2) a) At normal incidence, k) = kj(,i) = 0. Application of the generalized Snell’s law now
yields ©® = w® = 0® and k¥ = kM =0, as well as k¥ = kY = 0. From the dispersion
relation, k- k = (w/c¢)*u(w)e(w), we find

k, = +[(w/c)?p(w)e(w) — k2 — k1% = +(w/0)Ju(w)e(w), (1)

where the plus or minus signs for k&, k{7, and k® must be chosen judiciously. We will have

kD = —(w/u(w)e,(w) = —n,0/c, 2)
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kz(r) o ((U/C) ua(a))ga(a)) = naa)/C, S 0| (3)
kO = —(w/Ju,(@)e,(w) = —(n) + i pw/c. 4

b) V:D(,t) = prec(rt) =0~ k- eoe(w)Eoe“""““”) =0 -~ k-E=0
= oy + J6)Eoy + k,Eo, > EW=fp0 =Wy (5)

c) VXE(rt)=—-0B(rt)/ot - ikxEe® "9 =juu u(w)H,elk r— ot
> (& + kY + k,2) X (B + Eo, Y + Eg2) = opou(w)H,

- Ho = _(wﬂoﬂ)_lkz(Eny\ - EOx?)' (6)
. W _ .
Recalling that Ej,” = 0, we arrive at e = e C = (dote) "
. P v o - R
HY = (0pou) PV ELY = —(ng/cutopt)ERY = - / g0y, (7)
HY = (o) kPO EDT - EDY) = - [ 60z~ ED9). 8)
HY = —(po,) kP ()2 — EQP) = |2 (ER ~ E,)9). ©

d) The continuity conditions for E), and H, fields at the interface (i.e., at z = 0%) now become
EV+EY =EY - E® = EY, (10)

%X+H(r> HY /eoea 0 = /eoebE(w (11
HoHla HoMp

The only solution of Eqs.(10) and (11) is Ej, ) — EO(;) = (. The remaining boundary conditions
(i.e., those pertaining to the continuity of E,, and H,atz = 0%) yield

EQ +EY =EQ, (12)

(1) r) _ (t) f £0€q (1) / £0&q (r) / £0€p (t)
HOy + HOY Moﬂa Moﬂa Moﬂb
- Ve tta ED —ED) = e, /1, EX. (13)

Substituting from Eq.(12) into Eq.(13), we arrive at

Vel tta EL —EDY = e, /m, ED + ED). (14)

Solving the above equations, we find

(r)/E(l) VEa/ka = Vep/thp (15)
Véa/lla + \/Sb/ﬂb’

® () _ 2\ &a/la
=E, /E, _ 16
t= / Vga/ﬂa+\/5b/ﬂb ( )
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e) The reflected and transmitted plane-waves consist of the following E and H fields:

YT AL

ED(r,t) = pEDeilkz z -0z, (17)
ARTeAL)

EO(r ¢t) = tEDeiks 2 - wdy, (18)

(0 YETeAL)

HO(r,t) = H el 7= 999 = p [e e, /uop, EQ ez 7= 995, [secEq®)] (19)
(. ® 1,

H® (1", t) — Ho(;)el(kzt z- wt)j\, — (wﬂoﬂb)_lkz(t)Eo(;t()el(kzt z- wt)y' see Eq.(6)] (20)

The above expression of H® can be further simplified, but Eq.(20) is convenient for use in part (f).

f) In the limit when u, — oo, we will have /&,/u, = 0, in which case p - 1 and T — 2; see
Eqgs.(15) and (16). The tangential H-field immediately above the interface, namely, H(S,) + HO(;),
now approaches —+/&,&,/ ot (1 — p)EO(,iC) = 0; see Eqgs.(7) and (19). Inside the transmittance

. . . i, (8
medium b, the H-field drops to zero everywhere due to the rapid exponential decay of eikzz ; see
Eq.(4)—also, in accordance with Eq.(9), HO(;) — 0 as pu, = oo. The tangential H-field thus remains
continuous and a surface-electric-current does not appear in the system.

The situation is markedly different for E| at the z = 0 interface as u;,, = oo (and, consequently,
p - 1and 7 - 2). Here, E, immediately above the interface will be E) + EX = (1 4+ p)EY -
ZEO(B. However, inside the transmittance medium b, the E-field everywhere approaches zero due

. . . i, (O . .

to the rapid exponential decline of ek27 for z < 0. Considering that BO(r, t) = pu,u, HP (1, t),
Eq.(20) yields

i1, (0
0BY (r,£) /0t = —iwpop, HO (1, £) = —ikPED ek~ 00, (21)

Integrating the above expression over the entire penetration depth of the transmitted B-field,
one arrives at

() 0 . . .
[[_10BP@,0)/0t)dz = ~EQDeitxz=00| = _fDeiot = —ggDemiot (22)

Thus, in the limit when p, — oo, while 9B /dt goes to zero everywhere that z is negative,
the integral of aBy(t) /0t over the entire depth of medium b approaches —ZESC)e_i“’t; see Eq.(22).
This, of course, is consistent with the boundary condition according to Maxwell’s third equation,
V X E = —dB/0t, because the time-derivative of the magnetic induction B, now confined to the

surface of medium b and acting as a surface-magnetic-current-density (directed along the y-axis),
accounts for the discontinuity of E, at the z = 0 interface.

Problem 3) a) According to the generalized Snell’s law, ¥ = w™ = w® and kii) = kir) = k,gt);
also, kj(,i) = kj(,r) = kﬁt) = 0. Therefore, k(" = \/ (w/c)?*n2 — k% = (w/c)n, cos 6. Note that the
chosen sign for k() is positive, ensuring that the reflected beam propagates upward, along the z-
axis. As for the transmitted beam, the dispersion relation yields kP = i\/ (w/c)?n2 — k2. The
sign of k{® must be chosen to ensure the exponential decay of the transmitted wave along the
negative z-axis; in other words, the imaginary part of k{® must be negative. With this
understanding, we proceed to use the minus sign for k(? in the equations that follow.
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b) V-D(rt) = pre(mt) =0 — ik-ge(w)E,eik -9 =0 - k-E, =0
- kxEOx + yEOy + szoz =0 - Eoz = _kXEOX/kZ' (1)

The above identity holds for all three plane-waves. Therefore,

i (w/c)ngsin GE(Q i
Ey) = T (e/om.cose — (tan 0)E,,. 2)
(w/c)ng sin GE(?
Eo(zr) - (w/c)nacosé? = —(tan Q)Eo(?a 3)
E(t) _ _ (w/c)ngsin 0532 _ Nngsinf ) ()
0z T _[(w/c)?n} —k2]%  [n-nZsin2@]% 0% "

c) VXE(rt)=—-0B(rt)/ot — ikxE,el® 79 =juu u(w)H,e'k ™~
> (kX + Y + k,2) X (B + By, 3 + Ey,2) = wpon(w)H,

- HO = (('UMO.U')_l[_szOyf + (szOx - kxE*)z)y + kxEoyﬁ]

| invoking Eq.(1) |
_ ~ k% + k2 ~ A
- H,= (wllo.u) 1 [_szny + ( )ony + kxEOyZ]' 5
Substituting (w/c)n, sin @ for k. and also the relevant expressions for kD, k{”? and kP, we find
Hgi) =/ &y€q/ Uolhg [COS O Eo(;)ﬁc\ - (Eg,ic)/cos 0)y + sin 6 Eo(iy)i], (6)
HY = [e,e,/top, [—cos 6 Eo(;)ic\ + (E® /cos 0)9 + sin @ Eg,)ﬁ], (7)
® _ _ , o ng (3PN : ) A
HY® = (cpop,) ' [YnZ —nZsin2 0 EQ% — %TZWE&)Y +n, sin @ E2]. (®)
d) The continuity of E,, E,,, H, and H,, at the z = 0 boundary between media a and b yields
) By +Ey = Egy, ©)
. 0] (r) 2 ()
. ® (r) _ © Ea [ Eox  Eox \ _ NpEox
ii) Hoy + Hoy o Hoy - \/:a (cosG cos 9) o up(n? —n? sin2 9)%
O _ o0 _ gpng cos O Q)
> B —Eo’ = gq(n} —nZsin2 )% "0*° (10)
iii) EY + ED = ED, (11)

iv) HY + HO = gO  [e 74 (cos@ E(S;) — cos @ EO(;)) = (1/u,)\/n? —n2sin2 @ EO(;)

2

. 2 _ 02 0\
Eo(;,) _ E(g) _ Ug(ng — ng sin“ 6) E(t) (12)

UpNg COS O oy

—_

Equations (9) and (10) are a pair of coupled equations that can be solved for the Fresnel
reflection and transmission coefficients for p-polarized incident light, namely, p, = E, @ / EO(;) and

0x

T, = E® /ED . Similarly, Eqs.(11) and (12) are a coupled pair that can be solved for p, = Eg,) JED

oy
and 7, = EO(;) / EO(;) (i.e., the Fresnel reflection and transmission coefficients for s-polarized light.)
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