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Opti 501 2nd Midterm Exam (10/29/2024) Time: 75 minutes 

Please write your name and ID number on all the pages, then staple them together. 
Answer all the questions. 

Note: Bold symbols represent vectors and vector fields. 

Problem 1) The Fourier kernel in three-dimensional spacetime (i.e., two-dimensional space plus 
time) is 𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔 = 𝑘𝑘𝑥𝑥𝑥𝑥 + 𝑘𝑘𝑦𝑦𝑦𝑦 − 𝜔𝜔𝜔𝜔. 

a) Draw a diagram in the 𝑥𝑥𝑥𝑥-plane that shows an arbitrary arrow for 𝒌𝒌 = 𝑘𝑘𝑥𝑥𝒙𝒙� + 𝑘𝑘𝑦𝑦𝒚𝒚�, another 
arbitrary arrow for 𝒓𝒓 = 𝑥𝑥𝒙𝒙� + 𝑦𝑦𝒚𝒚�, an angle 𝜑𝜑 between 𝒌𝒌 and 𝒓𝒓, and the location of all points in 
the 𝑥𝑥𝑥𝑥-plane where, for the particular vector 𝒌𝒌 that you have drawn, the dot-product 𝒌𝒌 ∙ 𝒓𝒓 is 
constant. 

b) In your diagram, identify the projection of 𝒓𝒓 on 𝒌𝒌, then explain why all the points in the 𝑥𝑥𝑥𝑥-
plane that have the same projection on 𝒌𝒌 must have the same value for their dot-product 𝒌𝒌 ∙ 𝒓𝒓. 

c) Let the constant value of 𝒌𝒌 ∙ 𝒓𝒓 be 𝑐𝑐1. Pick a different constant 𝑐𝑐2, somewhat greater than 𝑐𝑐1, 
then show (on the same diagram) the location 𝒓𝒓 of all the points in the 𝑥𝑥𝑥𝑥-plane whose dot-
product with your chosen vector 𝒌𝒌 now equals 𝑐𝑐2. 

d) The distance between the two (straight and parallel) lines that you have identified in parts (a) 
and (c) is called a wavelength (denoted by 𝜆𝜆) provided that 𝑐𝑐2 − 𝑐𝑐1 = 2𝜋𝜋. What is the relation 
between 𝜆𝜆 and the magnitude 𝑘𝑘 of the vector 𝒌𝒌? 

e) In the two-dimensional 𝑥𝑥𝑥𝑥-space, a wavefront is a straight-line perpendicular to 𝒌𝒌, whose 
distance from the origin is 𝑑𝑑 = 𝑟𝑟 cos𝜑𝜑. The phase of the wavefront at time 𝑡𝑡 is defined as 
Φ(𝒓𝒓, 𝑡𝑡) = 𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔 = 𝑘𝑘𝑘𝑘 − 𝜔𝜔𝜔𝜔. The wavefront moves along 𝒌𝒌 with a velocity 𝑽𝑽 in such a 
way that its phase at 𝑑𝑑 = 𝑉𝑉𝑉𝑉 does not change with the passage of time. Show that 𝑉𝑉 = 𝜔𝜔 𝑘𝑘⁄ . 

 
Problem 2) The scalar and vector potentials of classical electrodynamics are given in the Fourier 
domain as follows: 

 𝜓𝜓(𝒌𝒌,𝜔𝜔) = 𝜌𝜌total
(e) (𝒌𝒌,𝜔𝜔) 𝜀𝜀0[𝑘𝑘2 − (𝜔𝜔 𝑐𝑐⁄ )2]⁄  

, 𝑨𝑨(𝒌𝒌,𝜔𝜔) = 𝜇𝜇0 𝑱𝑱total
(e) (𝒌𝒌,𝜔𝜔) [𝑘𝑘2 − (𝜔𝜔 𝑐𝑐⁄ )2]⁄  

. 

a) What are the relations between 𝜌𝜌total
(e)  and 𝑱𝑱total

(e)  on the one hand, and the standard sources 𝜌𝜌free,  
𝑱𝑱free, 𝑷𝑷, and 𝑴𝑴 on the other? Express these relations first in the spacetime domain (𝒓𝒓, 𝑡𝑡), then 
translate them into the Fourier domain (𝒌𝒌,𝜔𝜔). 

b) Show that the charge-current continuity equation, 𝜵𝜵 ∙ 𝑱𝑱total
(e) + 𝜕𝜕𝜌𝜌total

(e) 𝜕𝜕𝜕𝜕⁄ = 0, is a direct 
consequence of Maxwell’s 1st and 2nd equations, namely, 𝜀𝜀0𝜵𝜵 ∙ 𝑬𝑬 = 𝜌𝜌total

(e)  and 𝜵𝜵 × 𝑩𝑩 =
𝜇𝜇0 𝑱𝑱total

(e) + 𝜇𝜇0𝜀𝜀0𝜕𝜕𝑬𝑬 𝜕𝜕𝜕𝜕⁄ . Hint: 𝜵𝜵 ∙ [𝜵𝜵 × 𝑽𝑽(𝒓𝒓, 𝑡𝑡)] = 0 for any vector field 𝑽𝑽(𝒓𝒓, 𝑡𝑡). 

c) Express the above charge-current continuity equation in the Fourier domain (𝒌𝒌,𝜔𝜔). 

d) Show that the aforementioned 𝜓𝜓(𝒌𝒌,𝜔𝜔) and 𝑨𝑨(𝒌𝒌,𝜔𝜔) satisfy the Lorenz gauge condition. 
 
Problem 3) In the absence of all electromagnetic (EM) sources in free space, the total electric 
charge and current densities, namely, 𝜌𝜌total

(e) (𝒓𝒓, 𝑡𝑡) and 𝑱𝑱total
(e) (𝒓𝒓, 𝑡𝑡), will be zero. Nevertheless, EM 

fields and potentials can exist in free space if the identity 𝑘𝑘2 − (𝜔𝜔 𝑐𝑐⁄ )2 = 0 is satisfied. Under 
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the circumstances, it is possible for a scalar potential plane-wave 𝜓𝜓(𝒓𝒓, 𝑡𝑡) = 𝜓𝜓0𝑒𝑒i(𝒌𝒌0∙ 𝒓𝒓 − 𝜔𝜔0𝑡𝑡) and 
the corresponding vector potential plane-wave 𝑨𝑨(𝒓𝒓, 𝑡𝑡) = 𝑨𝑨0𝑒𝑒i(𝒌𝒌0∙ 𝒓𝒓 − 𝜔𝜔0𝑡𝑡) to reside in free space 
provided that |𝒌𝒌0| = 𝜔𝜔0 𝑐𝑐⁄ .  

a) What is the relation between 𝑨𝑨0 and 𝜓𝜓0 if the above plane-wave potentials are specified in the 
Lorenz gauge? Simplify your result to show that 𝐴𝐴0∥ = 𝜓𝜓0 𝑐𝑐⁄ . (Note: ∥ and ⊥ are relative to 𝒌𝒌0.) 

b) Find the amplitude 𝑩𝑩0 of the plane-wave’s magnetic 𝐵𝐵-field in terms of 𝒌𝒌0 and 𝑨𝑨0⊥. 

c) Find the amplitude 𝑬𝑬0 of the plane-wave’s electric field in terms of 𝜔𝜔0, 𝒌𝒌0, 𝑨𝑨0 and 𝜓𝜓0. Invoke 
the Lorenz gauge condition of part (a) to show that 𝑬𝑬0 = i𝜔𝜔0𝑨𝑨0⊥. 

d) Express the Poynting vector 𝑺𝑺(𝒓𝒓, 𝑡𝑡) of the plane-wave in terms of 𝜔𝜔0, 𝒌𝒌0, 𝑨𝑨0⊥ and the 
impedance 𝑍𝑍0 of free space. Hint: 𝒂𝒂 × (𝒃𝒃 × 𝒄𝒄) = (𝒂𝒂 ∙ 𝒄𝒄)𝒃𝒃 − (𝒂𝒂 ∙ 𝒃𝒃)𝒄𝒄;  also 𝑍𝑍0 = 𝜇𝜇0𝑐𝑐. 

 
Problem 4) An infinitely large, thin, neutral (i.e., chargeless) sheet in the 𝑥𝑥𝑥𝑥-plane carries the 
electric current-density 𝑱𝑱free(𝒓𝒓, 𝑡𝑡) = 𝐽𝐽𝑠𝑠0𝛿𝛿(𝑦𝑦) cos(𝜔𝜔0𝑡𝑡) 𝒛𝒛�. Working in the Lorenz gauge, one can 
show that the scalar and vector potentials in the surrounding free space are given by 

 𝜓𝜓(𝒓𝒓, 𝑡𝑡) = 0,              𝑨𝑨(𝒓𝒓, 𝑡𝑡) = 𝑍𝑍0𝐽𝐽𝑠𝑠0
2𝜔𝜔0

sin �𝜔𝜔0 �𝑡𝑡 −
|𝑦𝑦|
𝑐𝑐
�� 𝒛𝒛�. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) Find the radiated 𝑬𝑬 and 𝑯𝑯 fields on both sides of the sheet, i.e., in the free-space regions 
𝑦𝑦 > 0 and 𝑦𝑦 < 0. Hint: 𝜵𝜵 × 𝑽𝑽(𝒓𝒓, 𝑡𝑡) = �𝜕𝜕𝑉𝑉𝑧𝑧

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝑉𝑉𝑦𝑦

𝜕𝜕𝜕𝜕
�𝒙𝒙� + �𝜕𝜕𝑉𝑉𝑥𝑥

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝑉𝑉𝑧𝑧

𝜕𝜕𝜕𝜕
� 𝒚𝒚� + �𝜕𝜕𝑉𝑉𝑦𝑦

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝑉𝑉𝑥𝑥

𝜕𝜕𝜕𝜕
� 𝒛𝒛�. 

b) Confirm that your solutions for the 𝑬𝑬 and 𝑯𝑯 fields satisfy all four of Maxwell’s boundary 
conditions at the surface of the sheet (i.e., in the 𝑥𝑥𝑥𝑥-plane at 𝑦𝑦 = 0). 

c) Compute the Poynting vector 𝑺𝑺(𝒓𝒓, 𝑡𝑡) on both sides of the sheet, then determine the time-
averaged rate (per unit area per unit time) at which the sheet radiates electromagnetic (EM) 
energy into its surrounding free space. 

d) In the absence of polarization 𝑷𝑷(𝒓𝒓, 𝑡𝑡) and magnetization 𝑴𝑴(𝒓𝒓, 𝑡𝑡), the rate of exchange of EM 
energy (per unit volume per unit time) between the radiated field and the material medium in 
this problem is 𝑬𝑬(𝒓𝒓, 𝑡𝑡) ∙ 𝑱𝑱free(𝒓𝒓, 𝑡𝑡). Show that the time-averaged radiated energy found in part 
(c) indeed equals the energy (per unit area per unit time) that is supplied by the mechanism 
that generates the sheet’s current. 
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𝑱𝑱(𝒓𝒓, 𝑡𝑡) = 𝐽𝐽𝑠𝑠o𝛿𝛿(𝑦𝑦) cos(𝜔𝜔o𝑡𝑡) 𝒛𝒛� x 
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