Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1) The Fourier kernel in three-dimensional spacetime (i.e., two-dimensional space plus time) is $\mathbf{k} \cdot \mathbf{r} - \omega t = k_x x + k_y y - \omega t$.

- a) Draw a diagram in the *xy*-plane that shows an arbitrary arrow for $\mathbf{k} = k_x \hat{\mathbf{x}} + k_y \hat{\mathbf{y}}$, another arbitrary arrow for $r = x\hat{x} + y\hat{y}$, an angle φ between **k** and **r**, and the location of all points in the xy-plane where, for the particular vector **k** that you have drawn, the dot-product $\mathbf{k} \cdot \mathbf{r}$ is constant. 1 pt
- b) In your diagram, identify the projection of \bm{r} on \bm{k} , then explain why all the points in the xyplane that have the same projection on k must have the same value for their dot-product $k \cdot r$. 1 pt
- c) Let the constant value of $\mathbf{k} \cdot \mathbf{r}$ be c_1 . Pick a different constant c_2 , somewhat greater than c_1 , then show (on the same diagram) the location \boldsymbol{r} of all the points in the xy -plane whose dotproduct with your chosen vector \bf{k} now equals c_2 . 1 pt
- d) The distance between the two (straight and parallel) lines that you have identified in parts (a) and (c) is called a wavelength (denoted by λ) provided that $c_2 - c_1 = 2\pi$. What is the relation between λ and the magnitude k of the vector \mathbf{k} ? 1 pt
- e) In the two-dimensional xy -space, a wavefront is a straight-line perpendicular to k , whose distance from the origin is $d = r \cos \varphi$. The phase of the wavefront at time t is defined as $\Phi(r, t) = \mathbf{k} \cdot \mathbf{r} - \omega t = k d - \omega t$. The wavefront moves along **k** with a velocity **V** in such a way that its phase at $d = Vt$ does *not* change with the passage of time. Show that $V = \omega/k$. 1 pt

Problem 2) The scalar and vector potentials of classical electrodynamics are given in the Fourier domain as follows:

$$
\psi(\mathbf{k},\omega)=\rho_{\text{total}}^{(e)}(\mathbf{k},\omega)/\varepsilon_{0}[k^{2}-(\omega/c)^{2}], \qquad A(\mathbf{k},\omega)=\mu_{0}J_{\text{total}}^{(e)}(\mathbf{k},\omega)/[k^{2}-(\omega/c)^{2}].
$$

- a) What are the relations between $\rho_{total}^{(e)}$ and $J_{total}^{(e)}$ on the one hand, and the standard sources ρ_{free} , f_{free} , **P**, and **M** on the other? Express these relations first in the spacetime domain (r, t) , then translate them into the Fourier domain (k, ω) . 2 pts
- b) Show that the charge-current continuity equation, $\nabla \cdot J_{total}^{(e)} + \partial \rho_{total}^{(e)}/\partial t = 0$, is a direct consequence of Maxwell's 1st and 2nd equations, namely, $\varepsilon_0 \nabla \cdot \mathbf{E} = \rho_{\text{total}}^{(e)}$ and $\nabla \times \mathbf{B} =$ $\mu_0 J_{\text{total}}^{(e)} + \mu_0 \varepsilon_0 \partial E / \partial t$. **Hint**: $\nabla \cdot [\nabla \times V(r, t)] = 0$ for any vector field $V(r, t)$. 1 pt
- c) Express the above charge-current continuity equation in the Fourier domain (k, ω) . 1 pt
- d) Show that the aforementioned $\psi(\mathbf{k}, \omega)$ and $A(\mathbf{k}, \omega)$ satisfy the Lorenz gauge condition. 2 pts

Problem 3) In the absence of all electromagnetic (EM) sources in free space, the total electric charge and current densities, namely, $\rho_{total}^{(e)}(r, t)$ and $f_{total}^{(e)}(r, t)$, will be zero. Nevertheless, EM fields and potentials can exist in free space if the identity $k^2 - (\omega/c)^2 = 0$ is satisfied. Under

the circumstances, it is possible for a scalar potential plane-wave $\psi(\mathbf{r}, t) = \psi_0 e^{i(k_0 \cdot \mathbf{r} - \omega_0 t)}$ and the corresponding vector potential plane-wave $A(r, t) = A_0 e^{i(k_0 \cdot r - \omega_0 t)}$ to reside in free space provided that $|\mathbf{k}_{0}| = \omega_{0}/c$.

- a) What is the relation between A_0 and ψ_0 if the above plane-wave potentials are specified in the Lorenz gauge? Simplify your result to show that $A_{0\parallel} = \psi_0/c$. (Note: \parallel and \perp are relative to k_0 .) 1 pt
- b) Find the amplitude B_0 of the plane-wave's magnetic B-field in terms of k_0 and $A_{0\perp}$. 1 pt
- c) Find the amplitude \mathbf{E}_0 of the plane-wave's electric field in terms of ω_0 , \mathbf{k}_0 , \mathbf{A}_0 and ψ_0 . Invoke the Lorenz gauge condition of part (a) to show that $\mathbf{E}_{0} = i\omega_{0} \mathbf{A}_{0}$. 2 pts
- d) Express the Poynting vector $S(r, t)$ of the plane-wave in terms of ω_0 , k_0 , $A_{0\perp}$ and the impedance Z_0 of free space. Hint: $a \times (b \times c) = (a \cdot c)b (a \cdot b)c$; also $Z_0 = \mu_0 c$. **Hint**: $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$; also $Z_0 = \mu_0 c$. 2 pts

Problem 4) An infinitely large, thin, neutral (i.e., chargeless) sheet in the xz -plane carries the electric current-density $J_{\text{free}}(r, t) = J_{\text{so}}\delta(y) \cos(\omega_0 t) \hat{z}$. Working in the Lorenz gauge, one can show that the scalar and vector potentials in the surrounding free space are given by

- a) Find the radiated \bm{E} and \bm{H} fields on both sides of the sheet, i.e., in the free-space regions $y > 0$ and $y < 0$.
Hint: $\nabla \times V(r, t) = \left(\frac{\partial V_z}{\partial y} - \frac{\partial V_y}{\partial z}\right) \hat{x} + \left(\frac{\partial V_x}{\partial z} - \frac{\partial V_z}{\partial x}\right) \hat{y} + \left(\frac{\partial V_y}{\partial x} - \frac{\partial V_x}{\partial y}\right) \hat{z}$. 2 pts
- b) Confirm that your solutions for the E and H fields satisfy all four of Maxwell's boundary conditions at the surface of the sheet (i.e., in the xz-plane at $y = 0$). 2 pts
- c) Compute the Poynting vector $S(r, t)$ on both sides of the sheet, then determine the timeaveraged rate (per unit area per unit time) at which the sheet radiates electromagnetic (EM) energy into its surrounding free space. 2 pts
- d) In the absence of polarization $P(r, t)$ and magnetization $M(r, t)$, the rate of exchange of EM energy (per unit volume per unit time) between the radiated field and the material medium in this problem is $E(r, t) \cdot J_{\text{free}}(r, t)$. Show that the time-averaged radiated energy found in part (c) indeed equals the energy (per unit area per unit time) that is supplied by the mechanism that generates the sheet's current. 2 pts