Problem 1) a) All points located on the straight-line drawn from r perpendicular to k (or \perp to the extension of k) have $k \cdot r = |k||r| \cos \varphi = kr \cos \varphi = kd$, where d is the distance from the origin of the coordinates to the foot of the perpendicular line thus drawn.

b) The projection of r on k has a length $d = r \cos \varphi$. Considering that all the points located on a straight-line drawn from r and \perp to k have the same projection on k, the dot-product $k \cdot r$ of the vector k with all the points r located on this straight-line equals $kr \cos \varphi = kd$, which is independent of the location of r on the perpendicular line.

c) Considering that $\mathbf{k} \cdot \mathbf{r} = kd = c_1$ and that k is a positive constant, if φ happens to be in the interval $[-90^\circ, 90^\circ]$, which is the case in the above diagram, then c_1 will be positive. In this case, choosing $c_2 > c_1$ results in a larger distance d from the origin and, therefore, a line \perp to k that is parallel to and to the right of the previous straight-line (i.e., the one corresponding to $\mathbf{k} \cdot \mathbf{r} = c_1$). The new straight-line corresponding to c_2 is also shown in the above diagram.

d) Considering that $c_1 = kd_1$ and $c_2 = kd_2$, we have $k(d_2 - d_1) = c_2 - c_1 = 2\pi$. Denoting the distance $d_2 - d_1$ between the two (straight and parallel) lines by λ now yields $k = 2\pi/\lambda$.

e) Given that, for any given wavefront, $\Phi(\mathbf{r}, t) = \mathbf{k} \cdot \mathbf{r} - \omega t = kd - \omega t$ does *not* change with the passage of time, we must have $\Delta \Phi = k\Delta d - \omega \Delta t = 0$. Consequently, $V = \Delta d/\Delta t = \omega/k$.

Problem 2) a) In the spacetime domain, we have

$$\rho_{\text{total}}^{(e)}(\boldsymbol{r},t) = \rho_{\text{free}}(\boldsymbol{r},t) - \boldsymbol{\nabla} \cdot \boldsymbol{P}(\boldsymbol{r},t),$$
$$\boldsymbol{J}_{\text{total}}^{(e)}(\boldsymbol{r},t) = \boldsymbol{J}_{\text{free}}(\boldsymbol{r},t) + \partial \boldsymbol{P}(\boldsymbol{r},t) / \partial t + \mu_0^{-1} \boldsymbol{\nabla} \times \boldsymbol{M}(\boldsymbol{r},t).$$

Translating these equations into the Fourier domain, we find

$$\rho_{\text{total}}^{(e)}(\boldsymbol{k},\omega) = \rho_{\text{free}}(\boldsymbol{k},\omega) - i\boldsymbol{k}\cdot\boldsymbol{P}(\boldsymbol{k},\omega),$$
$$\boldsymbol{J}_{\text{total}}^{(e)}(\boldsymbol{k},\omega) = \boldsymbol{J}_{\text{free}}(\boldsymbol{k},\omega) - i\omega\boldsymbol{P}(\boldsymbol{k},\omega) + i\mu_0^{-1}\boldsymbol{k}\times\boldsymbol{M}(\boldsymbol{k},\omega)$$

b) Applying the divergence operator to both sides of Maxwell's 2nd equation, we arrive at

$$\boldsymbol{\nabla} \cdot (\boldsymbol{\nabla} \times \boldsymbol{B}) = \mu_0 \, \boldsymbol{\nabla} \cdot \boldsymbol{J}_{\text{total}}^{(e)} + \mu_0 \varepsilon_0 \partial (\boldsymbol{\nabla} \cdot \boldsymbol{E}) / \partial t.$$

While the left-hand side of the above equation vanishes, the right-hand side further simplifies upon replacing $\varepsilon_0 \nabla \cdot E$ with $\rho_{\text{total}}^{(e)}$ from Maxwell's 1st equation. This yields the charge-current continuity equation, as follows:

$$\mu_0 \nabla \cdot \boldsymbol{J}_{\text{total}}^{(e)}(\boldsymbol{r},t) + \mu_0 \partial \rho_{\text{total}}^{(e)}(\boldsymbol{r},t) / \partial t = 0.$$

c) Translating the above charge-current continuity equation into the Fourier domain, we arrive at

$$\mathbf{k} \cdot \mathbf{J}_{\text{total}}^{(e)}(\mathbf{k},\omega) - \mathbf{\omega}\rho_{\text{total}}^{(e)}(\mathbf{k},\omega) = 0.$$

d) The Lorenz gauge condition, $\nabla \cdot A(\mathbf{r}, t) + c^{-2} \partial \psi(\mathbf{r}, t) / \partial t = 0$, translates to $i\mathbf{k} \cdot A(\mathbf{k}, \omega) - i(\omega/c^2)\psi(\mathbf{k}, \omega) = 0$ in the Fourier domain. Substituting for \mathbf{A} and ψ , we find

$$\boldsymbol{k} \cdot \boldsymbol{A}(\boldsymbol{k},\omega) - (\omega/c^2)\psi(\boldsymbol{k},\omega) = \frac{\mu_0 \boldsymbol{k} \cdot \boldsymbol{J}_{\text{total}}^{(e)}(\boldsymbol{k},\omega) - (\mu_0 \varepsilon_0/\varepsilon_0)\omega \rho_{\text{total}}^{(e)}(\boldsymbol{k},\omega)}{k^2 - (\omega/c)^2}$$

The numerator of this equation is $\mu_0[\mathbf{k} \cdot \mathbf{J}_{total}^{(e)}(\mathbf{k}, \omega) - \omega \rho_{total}^{(e)}(\mathbf{k}, \omega)]$, which, according to the charge-current continuity equation, equals zero. The Lorenz gauge condition is thus satisfied.

Problem 3) a) Applying the Lorenz gauge identity, namely, $\nabla \cdot A(\mathbf{r}, t) + c^{-2} \partial \psi(\mathbf{r}, t) / \partial t = 0$, to the plane-wave scalar and vector potentials, we find that $\mathbf{k}_0 \cdot \mathbf{A}_0 = (\omega_0/c^2)\psi_0$. This is equivalent to $k_0 A_{0\parallel} = (\omega_0/c^2)\psi_0$, where $A_{0\parallel}$ is the projection of \mathbf{A}_0 onto the *k*-vector \mathbf{k}_0 . Given that $\mathbf{k}_0 = \omega_0/c$, we arrive at $A_{0\parallel} = \psi_0/c$.

b)
$$\boldsymbol{B}(\boldsymbol{r},t) = \boldsymbol{\nabla} \times \boldsymbol{A}(\boldsymbol{r},t) = i\boldsymbol{k}_0 \times \boldsymbol{A}_0 e^{i(\boldsymbol{k}_0 \cdot \boldsymbol{r} - \omega_0 t)} \rightarrow \boldsymbol{B}_0 = i\boldsymbol{k}_0 \times \boldsymbol{A}_0 = i\boldsymbol{k}_0 \times (\boldsymbol{A}_{0\parallel} + \boldsymbol{A}_{0\perp}).$$

Recalling that $\mathbf{k}_0 \times \mathbf{A}_{0\parallel} = (\omega_0/c) \hat{\mathbf{k}}_0 \times A_{0\parallel} \hat{\mathbf{k}}_0 = 0$, we find $\mathbf{B}_0 = i \mathbf{k}_0 \times \mathbf{A}_{0\perp}$.

c)
$$\boldsymbol{E}(\boldsymbol{r},t) = -\boldsymbol{\nabla}\psi - \partial \boldsymbol{A}/\partial t = -\mathrm{i}\boldsymbol{k}_{0}\psi_{0}e^{\mathrm{i}(\boldsymbol{k}_{0}\cdot\boldsymbol{r}-\omega_{0}t)} + \mathrm{i}\omega_{0}\boldsymbol{A}_{0}e^{\mathrm{i}(\boldsymbol{k}_{0}\cdot\boldsymbol{r}-\omega_{0}t)}$$

d) To determine the Poynting vector S(r, t), we need the real parts of both E and H fields; that is

$$\begin{aligned} \operatorname{Re}[\boldsymbol{E}(\boldsymbol{r},t)] &= \operatorname{Re}[\boldsymbol{E}_{0}e^{\operatorname{i}(\boldsymbol{k}_{0}\cdot\boldsymbol{r}-\omega_{0}t)}] = \operatorname{Re}[\operatorname{i}\omega_{0}\boldsymbol{A}_{0\perp}e^{\operatorname{i}(\boldsymbol{k}_{0}\cdot\boldsymbol{r}-\omega_{0}t)}] \\ &= \operatorname{Re}[\operatorname{i}\omega_{0}(\boldsymbol{A}_{0\perp}'+\operatorname{i}\boldsymbol{A}_{0\perp}'')e^{\operatorname{i}(\boldsymbol{k}_{0}\cdot\boldsymbol{r}-\omega_{0}t)}] \\ &= \operatorname{Re}[\operatorname{i}\omega_{0}(\boldsymbol{A}_{0\perp}'+\operatorname{i}\boldsymbol{A}_{0\perp}'')e^{\operatorname{i}(\boldsymbol{k}_{0}\cdot\boldsymbol{r}-\omega_{0}t)}] \\ &= -\omega_{0}[\boldsymbol{A}_{0\perp}'\sin(\boldsymbol{k}_{0}\cdot\boldsymbol{r}-\omega_{0}t) + \boldsymbol{A}_{0\perp}''\cos(\boldsymbol{k}_{0}\cdot\boldsymbol{r}-\omega_{0}t)]. \end{aligned}$$
$$\begin{aligned} \operatorname{Re}[\boldsymbol{H}(\boldsymbol{r},t)] &= \operatorname{Re}[\boldsymbol{\mu}_{0}^{-1}\boldsymbol{B}_{0}e^{\operatorname{i}(\boldsymbol{k}_{0}\cdot\boldsymbol{r}-\omega_{0}t)}] = \boldsymbol{\mu}_{0}^{-1}\boldsymbol{k}_{0}\times\operatorname{Re}[\operatorname{i}(\boldsymbol{A}_{0\perp}'+\operatorname{i}\boldsymbol{A}_{0\perp}'')e^{\operatorname{i}(\boldsymbol{k}_{0}\cdot\boldsymbol{r}-\omega_{0}t)}] \\ &= -\boldsymbol{\mu}_{0}^{-1}\boldsymbol{k}_{0}\times[\boldsymbol{A}_{0\perp}'\sin(\boldsymbol{k}_{0}\cdot\boldsymbol{r}-\omega_{0}t) + \boldsymbol{A}_{0\perp}''\cos(\boldsymbol{k}_{0}\cdot\boldsymbol{r}-\omega_{0}t)]. \end{aligned}$$
$$\begin{aligned} \boldsymbol{S}(\boldsymbol{r},t) &= \operatorname{Re}[\boldsymbol{E}(\boldsymbol{r},t)]\times\operatorname{Re}[\boldsymbol{H}(\boldsymbol{r},t)] \quad \underbrace{\boldsymbol{k}_{0}\cdot\boldsymbol{r}-\omega_{0}t}_{\mathbf{v}} \\ &= \boldsymbol{\mu}_{0}^{-1}\omega_{0}[\boldsymbol{A}_{0\perp}'\sin(\cdots) + \boldsymbol{A}_{0\perp}''\cos(\cdots)]\times\{\boldsymbol{k}_{0}\times[\boldsymbol{A}_{0\perp}'\sin(\cdots) + \boldsymbol{A}_{0\perp}''\cos(\cdots)]\}\} \\ &= \boldsymbol{\mu}_{0}^{-1}\omega_{0}\{[\boldsymbol{A}_{0\perp}'\sin(\cdots) + \boldsymbol{A}_{0\perp}''\cos(\cdots)]\cdot[\boldsymbol{A}_{0\perp}'\sin(\cdots) + \boldsymbol{A}_{0\perp}''\cos(\cdots)]\}\boldsymbol{k}_{0} \end{aligned}$$

$$-\mu_0^{-1}\omega_0\{[(\mathbf{A}_{0\perp}'\cdot\mathbf{k}_0)\sin(\cdots)+(\mathbf{A}_{0\perp}''\cdot\mathbf{k}_0)\cos(\cdots)]\}[\mathbf{A}_{0\perp}'\sin(\cdots)+\mathbf{A}_{0\perp}''\cos(\cdots)]$$

= $Z_0^{-1}\omega_0^2[\mathbf{A}_{0\perp}'^2\sin^2(\cdots)+\mathbf{A}_{0\perp}''^2\cos^2(\cdots)+2\mathbf{A}_{0\perp}'\cdot\mathbf{A}_{0\perp}''\sin(\cdots)\cos(\cdots)]\hat{\mathbf{k}}_0.$

The time-averaged Poynting vector is found to be $\langle \mathbf{S}(\mathbf{r},t) \rangle = (\omega_0^2/2Z_0)(A_{0\perp}'^2 + A_{0\perp}''^2)\hat{\mathbf{k}}_0$.

Problem 4) a)
$$E(\mathbf{r},t) = -\nabla \psi - \partial A/\partial t = -\frac{1}{2}Z_0 J_{s0} \cos[\omega_0(t-|y|/c)] \hat{\mathbf{z}}.$$
$$H(\mathbf{r},t) = \mu_0^{-1} \mathbf{B} = \mu_0^{-1} \nabla \times \mathbf{A} = \mu_0^{-1} \frac{\partial A_z}{\partial y} \hat{\mathbf{x}}$$
$$= \mu_0^{-1} \left(\frac{Z_0 J_{s0}}{2\omega_0}\right) \left(-\frac{\omega_0}{c}\right) \operatorname{sign}(y) \cos[\omega_0(t-|y|/c)] \hat{\mathbf{x}}$$
$$= -\frac{1}{2} \operatorname{sign}(y) J_{s0} \cos[\omega_0(t-|y|/c)] \hat{\mathbf{x}}$$

b) Maxwell's 1st boundary condition is satisfied since there are no surface charges (i.e., $\sigma_{s0} = 0$), and since $D_{\perp} = D_y = \varepsilon_0 E_y$ is zero on both sides of the sheet.

Maxwell's 2nd boundary condition is satisfied since, in the *xz*-plane of the sheet at y = 0, the surface-current-density J_s is given by $J_{s0} \cos(\omega_0 t) \hat{z}$, while the parallel *H*-fields at the sheet's front and back surfaces at $y = 0^{\pm}$ are $H_{\parallel} = H_x \hat{x} = \mp \frac{1}{2} J_{s0} \cos(\omega_0 t) \hat{x}$. The discontinuity of H_{\parallel} is thus seen to be equal to the magnitude J_s of J_s , while the direction of H_{\parallel} is orthogonal to that of J_s and in compliance with the right-hand rule.

Maxwell's 3rd boundary condition at $y = 0^{\pm}$ is satisfied since $E_{\parallel} = -\frac{1}{2}Z_0 J_{s0} \cos(\omega_0 t) \hat{z}$ is continuous at the sheet's surface. This *E*-field also exists within the sheet, exerting a Lorentz force on the sheet's surface-current-density J_s .

Maxwell's 4th boundary condition at $y = 0^{\pm}$ is satisfied since the perpendicular *B*-field, i.e., $B_y = \mu_0 H_y = 0$, satisfies the continuity condition at the front and back sides of the sheet.

c)
$$\mathbf{S}(\mathbf{r},t) = \mathbf{E}(\mathbf{r},t) \times \mathbf{H}(\mathbf{r},t) = \frac{1}{4} \operatorname{sign}(y) Z_0 J_{s0}^2 \cos^2[\omega_0(t-|y|/c)] \hat{\mathbf{y}}$$

The time-averaged rate of EM energy flow into the surrounding free space on either side of the sheet is $\frac{1}{8}Z_0 J_{s0}^2$, considering that $\langle \cos^2(\omega_0 t) \rangle = \frac{1}{2}$. Combining the energy flux on both sides, the total rate of energy outflow from the sheet turns out to be $2\langle S(\mathbf{r}, t) \rangle = \frac{1}{4}Z_0 J_{s0}^2$.

d)
$$\int_{z=-\infty}^{\infty} \boldsymbol{E}(\boldsymbol{r},t) \cdot \boldsymbol{J}_{\text{free}}(\boldsymbol{r},t) dz = \left[-\frac{1}{2}Z_0 J_{s0} \cos(\omega_0 t) \,\hat{\boldsymbol{z}}\right] \cdot \left[J_{s0} \cos(\omega_0 t) \,\hat{\boldsymbol{z}}\right] = -\frac{1}{2}Z_0 J_{s0}^2 \cos^2(\omega_0 t).$$

The time-average of the expression on the right-hand side of the above equation is $-\frac{1}{4}Z_0 J_{so}^2$, which is equal in magnitude and opposite in sign to the time-averaged rate of energy outflow found in part (c). The minus sign in the expression of $\langle E \cdot J_{free} \rangle$ indicates that the radiated *E*-field *extracts* energy from the current sheet — as opposed to delivering energy to the current sheet.