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Opti 501 2nd Midterm Solutions (10/29/2024) Time: 75 minutes 

Problem 1) a) All points located on the straight-line drawn from 𝒓𝒓 perpendicular to 𝒌𝒌 (or ⊥ to 
the extension of 𝒌𝒌) have 𝒌𝒌 ∙ 𝒓𝒓 = |𝒌𝒌||𝒓𝒓| cos𝜑𝜑 = 𝑘𝑘𝑘𝑘 cos𝜑𝜑 = 𝑘𝑘𝑘𝑘, where 𝑑𝑑 is the distance from the 
origin of the coordinates to the foot of the perpendicular line thus drawn.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) The projection of 𝒓𝒓 on 𝒌𝒌 has a length 𝑑𝑑 = 𝑟𝑟 cos𝜑𝜑. Considering that all the points located on a 
straight-line drawn from 𝒓𝒓 and ⊥ to 𝒌𝒌 have the same projection on 𝒌𝒌, the dot-product 𝒌𝒌 ∙ 𝒓𝒓 of the 
vector 𝒌𝒌 with all the points 𝒓𝒓 located on this straight-line equals 𝑘𝑘𝑘𝑘 cos𝜑𝜑 = 𝑘𝑘𝑘𝑘, which is 
independent of the location of 𝒓𝒓 on the perpendicular line. 

c) Considering that 𝒌𝒌 ∙ 𝒓𝒓 = 𝑘𝑘𝑘𝑘 = 𝑐𝑐1 and that 𝑘𝑘 is a positive constant, if 𝜑𝜑 happens to be in the 
interval [−90°, 90°], which is the case in the above diagram, then 𝑐𝑐1 will be positive. In this 
case, choosing 𝑐𝑐2 > 𝑐𝑐1 results in a larger distance 𝑑𝑑 from the origin and, therefore, a line ⊥ to 𝒌𝒌 
that is parallel to and to the right of the previous straight-line (i.e., the one corresponding to 
𝒌𝒌 ∙ 𝒓𝒓 = 𝑐𝑐1). The new straight-line corresponding to 𝑐𝑐2 is also shown in the above diagram. 

d) Considering that 𝑐𝑐1 = 𝑘𝑘𝑑𝑑1 and 𝑐𝑐2 = 𝑘𝑘𝑑𝑑2, we have 𝑘𝑘(𝑑𝑑2 − 𝑑𝑑1) = 𝑐𝑐2 − 𝑐𝑐1 = 2𝜋𝜋. Denoting the 
distance 𝑑𝑑2 − 𝑑𝑑1 between the two (straight and parallel) lines by 𝜆𝜆 now yields 𝑘𝑘 = 2𝜋𝜋 𝜆𝜆⁄ . 

e) Given that, for any given wavefront, Φ(𝒓𝒓, 𝑡𝑡) = 𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔 = 𝑘𝑘𝑘𝑘 − 𝜔𝜔𝜔𝜔 does not change with 
the passage of time, we must have ∆Φ = 𝑘𝑘∆𝑑𝑑 − 𝜔𝜔∆𝑡𝑡 = 0. Consequently, 𝑉𝑉 = ∆𝑑𝑑 ∆𝑡𝑡⁄ = 𝜔𝜔 𝑘𝑘⁄ . 
 
Problem 2) a) In the spacetime domain, we have 

 𝜌𝜌total
(e) (𝒓𝒓, 𝑡𝑡) = 𝜌𝜌free(𝒓𝒓, 𝑡𝑡) − 𝜵𝜵 ∙ 𝑷𝑷(𝒓𝒓, 𝑡𝑡), 

 𝑱𝑱total
(e) (𝒓𝒓, 𝑡𝑡) = 𝑱𝑱free(𝒓𝒓, 𝑡𝑡) + 𝜕𝜕𝑷𝑷(𝒓𝒓, 𝑡𝑡) 𝜕𝜕𝜕𝜕⁄ + 𝜇𝜇0−1𝜵𝜵 × 𝑴𝑴(𝒓𝒓, 𝑡𝑡). 

Translating these equations into the Fourier domain, we find 

 𝜌𝜌total
(e) (𝒌𝒌,𝜔𝜔) = 𝜌𝜌free(𝒌𝒌,𝜔𝜔) − i𝒌𝒌 ∙ 𝑷𝑷(𝒌𝒌,𝜔𝜔), 

 𝑱𝑱total
(e) (𝒌𝒌,𝜔𝜔) = 𝑱𝑱free(𝒌𝒌,𝜔𝜔) − i𝜔𝜔𝑷𝑷(𝒌𝒌,𝜔𝜔) + i𝜇𝜇0−1𝒌𝒌× 𝑴𝑴(𝒌𝒌,𝜔𝜔). 

b) Applying the divergence operator to both sides of Maxwell’s 2nd equation, we arrive at 

 𝜵𝜵 ∙ (𝜵𝜵 × 𝑩𝑩) = 𝜇𝜇0 𝜵𝜵 ∙ 𝑱𝑱total
(e) + 𝜇𝜇0𝜀𝜀0𝜕𝜕(𝜵𝜵 ∙ 𝑬𝑬) 𝜕𝜕𝜕𝜕⁄ . 

𝑥𝑥 

𝑦𝑦 

𝒌𝒌 

𝒓𝒓 

𝜑𝜑  

𝜆𝜆  

𝒌𝒌 ∙ 𝒓𝒓 = 𝑐𝑐2 

𝒌𝒌 ∙ 𝒓𝒓 = 𝑐𝑐1 
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While the left-hand side of the above equation vanishes, the right-hand side further 
simplifies upon replacing 𝜀𝜀0𝜵𝜵 ∙ 𝑬𝑬 with 𝜌𝜌total

(e)  from Maxwell’s 1st equation. This yields the charge-
current continuity equation, as follows: 

 𝜇𝜇0 𝜵𝜵 ∙ 𝑱𝑱total
(e) (𝒓𝒓, 𝑡𝑡) + 𝜇𝜇0𝜕𝜕𝜌𝜌total

(e) (𝒓𝒓, 𝑡𝑡) 𝜕𝜕𝜕𝜕⁄ = 0. 

c) Translating the above charge-current continuity equation into the Fourier domain, we arrive at 

 i𝒌𝒌 ∙ 𝑱𝑱total
(e) (𝒌𝒌,𝜔𝜔) − i𝜔𝜔𝜌𝜌total

(e) (𝒌𝒌,𝜔𝜔) = 0. 

d) The Lorenz gauge condition, 𝜵𝜵 ∙ 𝑨𝑨(𝒓𝒓, 𝑡𝑡) + 𝑐𝑐−2𝜕𝜕𝜕𝜕(𝒓𝒓, 𝑡𝑡) 𝜕𝜕𝜕𝜕⁄ = 0, translates to i𝒌𝒌 ∙ 𝑨𝑨(𝒌𝒌,𝜔𝜔) −
i(𝜔𝜔 𝑐𝑐2⁄ )𝜓𝜓(𝒌𝒌,𝜔𝜔) = 0 in the Fourier domain. Substituting for 𝑨𝑨 and 𝜓𝜓, we find 

 𝒌𝒌 ∙ 𝑨𝑨(𝒌𝒌,𝜔𝜔) − (𝜔𝜔 𝑐𝑐2⁄ )𝜓𝜓(𝒌𝒌,𝜔𝜔) = 𝜇𝜇0𝒌𝒌 ∙ 𝑱𝑱total
(e) (𝒌𝒌,𝜔𝜔) − (𝜇𝜇0𝜀𝜀0 𝜀𝜀0⁄ )𝜔𝜔𝜌𝜌total

(e) (𝒌𝒌,𝜔𝜔)

𝑘𝑘2− (𝜔𝜔 𝑐𝑐⁄ )2  
. 

The numerator of this equation is 𝜇𝜇0[𝒌𝒌 ∙ 𝑱𝑱total
(e) (𝒌𝒌,𝜔𝜔) − 𝜔𝜔𝜌𝜌total

(e) (𝒌𝒌,𝜔𝜔)], which, according to 
the charge-current continuity equation, equals zero. The Lorenz gauge condition is thus satisfied. 
 
Problem 3) a) Applying the Lorenz gauge identity, namely, 𝜵𝜵 ∙ 𝑨𝑨(𝒓𝒓, 𝑡𝑡) + 𝑐𝑐−2𝜕𝜕𝜕𝜕(𝒓𝒓, 𝑡𝑡) 𝜕𝜕𝜕𝜕⁄ = 0, 
to the plane-wave scalar and vector potentials, we find that 𝒌𝒌0 ∙ 𝑨𝑨0 = (𝜔𝜔0 𝑐𝑐2⁄ )𝜓𝜓0. This is 
equivalent to 𝑘𝑘0𝐴𝐴0∥ = (𝜔𝜔0 𝑐𝑐2⁄ )𝜓𝜓0, where 𝐴𝐴0∥ is the projection of 𝑨𝑨0 onto the 𝑘𝑘-vector 𝒌𝒌0. Given 
that 𝑘𝑘0 = 𝜔𝜔0 𝑐𝑐⁄ , we arrive at 𝐴𝐴0∥ = 𝜓𝜓0 𝑐𝑐⁄ . 

b) 𝑩𝑩(𝒓𝒓, 𝑡𝑡) = 𝜵𝜵 × 𝑨𝑨(𝒓𝒓, 𝑡𝑡) = i𝒌𝒌0 × 𝑨𝑨0𝑒𝑒i(𝒌𝒌0∙ 𝒓𝒓 − 𝜔𝜔0𝑡𝑡)    →    𝑩𝑩0 = i𝒌𝒌0 × 𝑨𝑨0 = i𝒌𝒌0 × (𝑨𝑨0∥ + 𝑨𝑨0⊥). 

 Recalling that 𝒌𝒌0 × 𝑨𝑨0∥ = (𝜔𝜔0 𝑐𝑐⁄ )𝒌𝒌�0 × 𝐴𝐴0∥𝒌𝒌�0 = 0, we find 𝑩𝑩0 = i𝒌𝒌0 × 𝑨𝑨0⊥. 

c) 𝑬𝑬(𝒓𝒓, 𝑡𝑡) = −𝜵𝜵𝜓𝜓 − 𝜕𝜕𝑨𝑨 𝜕𝜕𝜕𝜕⁄ = −i𝒌𝒌0𝜓𝜓0𝑒𝑒i(𝒌𝒌0∙ 𝒓𝒓 − 𝜔𝜔0𝑡𝑡) + i𝜔𝜔0𝑨𝑨0𝑒𝑒i(𝒌𝒌0∙ 𝒓𝒓 − 𝜔𝜔0𝑡𝑡) 

 →     𝑬𝑬0 = i𝜔𝜔0𝑨𝑨0 − i𝒌𝒌0𝜓𝜓0 = i𝜔𝜔0(𝑨𝑨0∥ + 𝑨𝑨0⊥) − i𝒌𝒌0𝜓𝜓0 

 = i𝜔𝜔0𝑨𝑨0⊥ + i𝜔𝜔0(𝜓𝜓0 𝑐𝑐⁄ )𝒌𝒌�0 − i(𝜔𝜔0 𝑐𝑐⁄ )𝒌𝒌�0𝜓𝜓0 

 = i𝜔𝜔0𝑨𝑨0⊥ + i(𝜔𝜔0 𝑐𝑐⁄ )(𝜓𝜓0 − 𝜓𝜓0)𝒌𝒌�0 = i𝜔𝜔0𝑨𝑨0⊥. 

d) To determine the Poynting vector 𝑺𝑺(𝒓𝒓, 𝑡𝑡), we need the real parts of both 𝑬𝑬 and 𝑯𝑯 fields; that is 

 Re[𝑬𝑬(𝒓𝒓, 𝑡𝑡)] = Re�𝑬𝑬0𝑒𝑒i(𝒌𝒌0∙ 𝒓𝒓 − 𝜔𝜔0𝑡𝑡)� = Re�i𝜔𝜔0𝑨𝑨0⊥𝑒𝑒i(𝒌𝒌0∙ 𝒓𝒓 − 𝜔𝜔0𝑡𝑡)� 

 = Re�i𝜔𝜔0(𝑨𝑨0⊥
′ + i𝑨𝑨0⊥

″ )𝑒𝑒i(𝒌𝒌0∙ 𝒓𝒓 − 𝜔𝜔0𝑡𝑡)� 

 = −𝜔𝜔0[𝑨𝑨0⊥
′ sin(𝒌𝒌0 ∙ 𝒓𝒓 − 𝜔𝜔0𝑡𝑡) + 𝑨𝑨0⊥

″ cos(𝒌𝒌0 ∙ 𝒓𝒓 − 𝜔𝜔0𝑡𝑡)]. 

 Re[𝑯𝑯(𝒓𝒓, 𝑡𝑡)] = Re�𝜇𝜇0−1𝑩𝑩0𝑒𝑒i(𝒌𝒌0∙ 𝒓𝒓 − 𝜔𝜔0𝑡𝑡)� = 𝜇𝜇0−1𝒌𝒌0 × Re�i(𝑨𝑨0⊥
′ + i𝑨𝑨0⊥

″ )𝑒𝑒i(𝒌𝒌0∙ 𝒓𝒓 − 𝜔𝜔0𝑡𝑡)� 

 = −𝜇𝜇0−1𝒌𝒌0 × [𝑨𝑨0⊥
′ sin(𝒌𝒌0 ∙ 𝒓𝒓 − 𝜔𝜔0𝑡𝑡) + 𝑨𝑨0⊥

″ cos(𝒌𝒌0 ∙ 𝒓𝒓 − 𝜔𝜔0𝑡𝑡)]. 

 𝑺𝑺(𝒓𝒓, 𝑡𝑡) = Re[𝑬𝑬(𝒓𝒓, 𝑡𝑡)] × Re[𝑯𝑯(𝒓𝒓, 𝑡𝑡)] 

 = 𝜇𝜇0−1𝜔𝜔0[𝑨𝑨0⊥
′ sin(⋯ ) + 𝑨𝑨0⊥

″ cos(⋯ )] × {𝒌𝒌0 × [𝑨𝑨0⊥
′ sin(⋯ ) + 𝑨𝑨0⊥

″ cos(⋯ )]} 

 = 𝜇𝜇0−1𝜔𝜔0{[𝑨𝑨0⊥
′ sin(⋯ ) + 𝑨𝑨0⊥

″ cos(⋯ )] ∙ [𝑨𝑨0⊥
′ sin(⋯ ) + 𝑨𝑨0⊥

″ cos(⋯ )]}𝒌𝒌0 

𝑨𝑨0⊥ = 𝑨𝑨0⊥
′ + i𝑨𝑨0⊥

″  is a complex vector. 

𝒌𝒌�0 = 𝒌𝒌0 𝑘𝑘0⁄  is the unit-vector along 𝒌𝒌0. 

𝒌𝒌0 ∙ 𝒓𝒓 − 𝜔𝜔0𝑡𝑡  
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 −𝜇𝜇0−1𝜔𝜔0{[(𝑨𝑨0⊥
′ ∙ 𝒌𝒌0) sin(⋯ ) + (𝑨𝑨0⊥

″ ∙ 𝒌𝒌0) cos(⋯ )]}[𝑨𝑨0⊥
′ sin(⋯ ) + 𝑨𝑨0⊥

″ cos(⋯ )] 

 = 𝑍𝑍0−1𝜔𝜔0
2[𝐴𝐴0⊥

′2 sin2(⋯ ) + 𝐴𝐴0⊥
″2 cos2(⋯ ) + 2𝑨𝑨0⊥

′ ∙ 𝑨𝑨0⊥
″ sin(⋯ ) cos(⋯ )]𝒌𝒌�0. 

The time-averaged Poynting vector is found to be 〈𝑺𝑺(𝒓𝒓, 𝑡𝑡)〉 = (𝜔𝜔0
2 2𝑍𝑍0⁄ )(𝐴𝐴0⊥

′2 + 𝐴𝐴0⊥
″2)𝒌𝒌�0. 

Problem 4) a) 𝑬𝑬(𝒓𝒓, 𝑡𝑡) = −𝜵𝜵𝜓𝜓 − 𝜕𝜕𝑨𝑨 𝜕𝜕𝜕𝜕⁄ = −½𝑍𝑍0 𝐽𝐽𝑠𝑠0 cos[𝜔𝜔0(𝑡𝑡 − |𝑦𝑦| 𝑐𝑐⁄ )] 𝒛𝒛�. 

 𝑯𝑯(𝒓𝒓, 𝑡𝑡) = 𝜇𝜇0−1𝑩𝑩 = 𝜇𝜇0−1𝜵𝜵 × 𝑨𝑨 = 𝜇𝜇0−1
𝜕𝜕𝐴𝐴𝑧𝑧
𝜕𝜕𝜕𝜕

𝒙𝒙� 

 = 𝜇𝜇0−1 �
𝑍𝑍0𝐽𝐽𝑠𝑠0
2𝜔𝜔0

� �−𝜔𝜔0
𝑐𝑐 �sign(𝑦𝑦) cos[𝜔𝜔0(𝑡𝑡 − |𝑦𝑦| 𝑐𝑐⁄ )]𝒙𝒙� 

 = −½ sign(𝑦𝑦)𝐽𝐽𝑠𝑠0 cos[𝜔𝜔0(𝑡𝑡 − |𝑦𝑦| 𝑐𝑐⁄ )]𝒙𝒙� 

b) Maxwell’s 1st boundary condition is satisfied since there are no surface charges (i.e., 𝜎𝜎𝑠𝑠0 = 0), 
and since 𝐷𝐷⊥ = 𝐷𝐷𝑦𝑦 = 𝜀𝜀0𝐸𝐸𝑦𝑦 is zero on both sides of the sheet. 

Maxwell’s 2nd boundary condition is satisfied since, in the 𝑥𝑥𝑥𝑥-plane of the sheet at 𝑦𝑦 = 0, 
the surface-current-density 𝑱𝑱𝑠𝑠 is given by 𝐽𝐽𝑠𝑠0 cos(𝜔𝜔0𝑡𝑡) 𝒛𝒛�, while the parallel 𝐻𝐻-fields at the sheet’s 
front and back surfaces at 𝑦𝑦 = 0± are 𝑯𝑯∥ = 𝐻𝐻𝑥𝑥𝒙𝒙� = ∓½𝐽𝐽𝑠𝑠0 cos(𝜔𝜔0𝑡𝑡) 𝒙𝒙�. The discontinuity of 𝑯𝑯∥ is 
thus seen to be equal to the magnitude 𝐽𝐽𝑠𝑠 of 𝑱𝑱𝑠𝑠, while the direction of 𝑯𝑯∥ is orthogonal to that of 
𝑱𝑱𝑠𝑠 and in compliance with the right-hand rule. 

Maxwell’s 3rd boundary condition at 𝑦𝑦 = 0± is satisfied since 𝑬𝑬∥ = −½𝑍𝑍0 𝐽𝐽𝑠𝑠0 cos(𝜔𝜔0𝑡𝑡) 𝒛𝒛� is 
continuous at the sheet’s surface. This 𝐸𝐸-field also exists within the sheet, exerting a Lorentz 
force on the sheet’s surface-current-density 𝑱𝑱𝑠𝑠. 

Maxwell’s 4th boundary condition at 𝑦𝑦 = 0± is satisfied since the perpendicular 𝐵𝐵-field, i.e.,  
𝐵𝐵𝑦𝑦 = 𝜇𝜇0𝐻𝐻𝑦𝑦 = 0, satisfies the continuity condition at the front and back sides of the sheet. 

c) 𝑺𝑺(𝒓𝒓, 𝑡𝑡) = 𝑬𝑬(𝒓𝒓, 𝑡𝑡) × 𝑯𝑯(𝒓𝒓, 𝑡𝑡) = ¼ sign(𝑦𝑦)𝑍𝑍0 𝐽𝐽𝑠𝑠02 cos2[𝜔𝜔0(𝑡𝑡 − |𝑦𝑦| 𝑐𝑐⁄ )]𝒚𝒚�. 
The time-averaged rate of EM energy flow into the surrounding free space on either side of 

the sheet is ⅛𝑍𝑍0 𝐽𝐽𝑠𝑠02 , considering that 〈cos2(𝜔𝜔0𝑡𝑡)〉 = ½. Combining the energy flux on both sides, 
the total rate of energy outflow from the sheet turns out to be 2〈𝑆𝑆(𝒓𝒓, 𝑡𝑡)〉 = ¼𝑍𝑍0 𝐽𝐽𝑠𝑠02 . 

d) ∫ 𝑬𝑬(𝒓𝒓, 𝑡𝑡) ∙ 𝑱𝑱free(𝒓𝒓, 𝑡𝑡)d𝑧𝑧∞

𝑧𝑧=−∞
= [−½𝑍𝑍0 𝐽𝐽𝑠𝑠0 cos(𝜔𝜔0𝑡𝑡) 𝒛𝒛�] ∙ [𝐽𝐽𝑠𝑠0 cos(𝜔𝜔0𝑡𝑡) 𝒛𝒛�] = −½𝑍𝑍0 𝐽𝐽𝑠𝑠02 cos2(𝜔𝜔0𝑡𝑡). 

The time-average of the expression on the right-hand side of the above equation is −¼𝑍𝑍0 𝐽𝐽𝑠𝑠02 , 
which is equal in magnitude and opposite in sign to the time-averaged rate of energy outflow 
found in part (c). The minus sign in the expression of 〈𝑬𝑬 ∙ 𝑱𝑱free〉 indicates that the radiated 𝐸𝐸-field 
extracts energy from the current sheet — as opposed to delivering energy to the current sheet. 
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