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Opti 501 1st Midterm Exam (9/26/2024) Time: 75 minutes 

Please write your name and ID number on all the pages, then staple them together. 
Answer all the questions. 

Note: Bold symbols represent vectors and vector fields. 

Problem 1) Consider a point-charge 𝑞𝑞 located at (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = (0, 0, 𝜁𝜁) in free space (i.e., vacuum), 
as shown in figure (a) below. 

a) At first, assume that 𝜁𝜁 = 0; that is, the charge is located at the origin of the coordinate system. 
Invoke the integral form of Maxwell’s first equation, 𝜵𝜵 ∙ 𝑫𝑫 = 𝜌𝜌free, along with symmetry 
considerations to show that the 𝐸𝐸-field at an arbitrary point 𝒓𝒓 in the surrounding space is 
given by 𝑬𝑬(𝒓𝒓) = 𝑞𝑞𝒓𝒓 (4𝜋𝜋𝜀𝜀0𝑟𝑟3)⁄ . This, of course, is the well-known Coulomb 𝐸𝐸-field of the 
point-charge. (Note: 𝒓𝒓 = 𝑟𝑟𝒓𝒓�) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) When 𝜁𝜁 ≠ 0, the expression of 𝑬𝑬(𝒓𝒓) must be modified to properly represent the new location 
of the point-charge. Figure (a) shows that the vector connecting the location of the point-
charge to the observation point 𝒓𝒓 is given by 𝒓𝒓 − 𝜁𝜁𝒛𝒛�. Write an expression for 𝑬𝑬(𝒓𝒓) in terms of 
the Cartesian coordinates (𝑥𝑥,𝑦𝑦, 𝑧𝑧) of the observation point 𝒓𝒓 and the location 𝜁𝜁 of the point-
charge 𝑞𝑞 on the 𝑧𝑧-axis. 

c) Fixing the observation point at 𝒓𝒓 = 𝑥𝑥𝒙𝒙� + 𝑦𝑦𝒚𝒚� + 𝑧𝑧𝒛𝒛�, find the derivative of 𝑬𝑬(𝒓𝒓) with respect to 
the variable 𝜁𝜁, then evaluate this derivative at 𝜁𝜁 = 0. In other words, compute 𝜕𝜕𝑬𝑬(𝒓𝒓) 𝜕𝜕𝜁𝜁⁄ |𝜁𝜁=0. 

Hint: The derivative with respect to 𝜁𝜁 of [𝑎𝑎 + (𝑏𝑏 − 𝜁𝜁)2]−3 2⁄  is 3(𝑏𝑏 − 𝜁𝜁)[𝑎𝑎 + (𝑏𝑏 − 𝜁𝜁)2]−5 2⁄ . 

d) Express the formula for 𝜕𝜕𝑬𝑬(𝒓𝒓) 𝜕𝜕𝜁𝜁⁄ |𝜁𝜁=0 obtained in part (c) in the spherical coordinate system, 
where 𝑟𝑟 = (𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2)1 2⁄ , 𝑧𝑧 = 𝑟𝑟 cos𝜃𝜃, and, as shown in figure (b), 𝒛𝒛� = cos 𝜃𝜃 𝒓𝒓� − sin𝜃𝜃 𝜽𝜽�. 

e) The expressions obtained for 𝜕𝜕𝑬𝑬(𝒓𝒓) 𝜕𝜕𝜁𝜁⁄ |𝜁𝜁=0 in Cartesian coordinates (part c) and spherical 
coordinates (part d) are related to the 𝐸𝐸-field distribution in the space surrounding an electric 
point-dipole 𝑝𝑝0𝒛𝒛�, located at (𝑥𝑥,𝑦𝑦, 𝑧𝑧) = (0, 0, 0). Here, 𝑝𝑝0 = 𝑞𝑞∆𝜁𝜁 (for sufficiently small ∆𝜁𝜁) is 
the magnitude of the point-dipole. Explain the way in which the expression of 𝜕𝜕𝑬𝑬(𝒓𝒓) 𝜕𝜕𝜁𝜁⁄ |𝜁𝜁=0 
in spherical coordinates (i.e., part d) leads to 𝑬𝑬dipole(𝒓𝒓) = 𝑝𝑝0(2 cos𝜃𝜃 𝒓𝒓� + sin𝜃𝜃 𝜽𝜽�) (4𝜋𝜋𝜀𝜀0𝑟𝑟3)⁄ . 
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Problem 2) Within the international system of units (𝑆𝑆𝑆𝑆), describe the units (or dimensions) of 
the electric charge-density 𝜌𝜌, surface electric charge-density 𝜎𝜎𝑠𝑠, electric current-density 𝑱𝑱, 
surface electric current-density 𝑱𝑱𝑠𝑠, electric field 𝑬𝑬, displacement field 𝑫𝑫, magnetic fields 𝑩𝑩 and 
𝑯𝑯, the Poynting vector 𝑺𝑺, and the electromagnetic momentum-density 𝑺𝑺 𝑐𝑐2⁄ . 

Invoke the various equations and identities of classical electrodynamics (in conjunction with 
those of the other areas of science and engineering) to express the units of each of the above 
entities in terms of the fundamental 𝑆𝑆𝑆𝑆 units, namely, meter (𝑚𝑚), kilogram (𝑘𝑘𝑘𝑘), second (𝑠𝑠), and 
ampere (𝐴𝐴). 
Hint: A point-particle’s position as a function of time in space, 𝒓𝒓(𝑡𝑡), its velocity, d𝒓𝒓 d𝑡𝑡⁄ , and its 
acceleration, d2𝒓𝒓 d𝑡𝑡2⁄ , have been used in classical physics to describe Newton’s law of motion 𝒇𝒇 = 𝑚𝑚𝒂𝒂 =
𝑚𝑚 d2𝒓𝒓 d𝑡𝑡2⁄ . Thus, the 𝑆𝑆𝑆𝑆 units of force (newton) are 𝑘𝑘𝑘𝑘 ∙ 𝑚𝑚 𝑠𝑠2⁄ . Similarly, Maxwell’s equations, such as 
𝜵𝜵 ∙ 𝑫𝑫 = 𝜌𝜌free, and the Lorentz force law, 𝒇𝒇 = 𝑞𝑞(𝑬𝑬 + 𝑽𝑽 × 𝑩𝑩), can be called upon to relate the units of 
various physical entities to those of the fundamental dimensions. 

Problem 3) A magnetic point-dipole 𝒎𝒎 = 𝑚𝑚0𝒛𝒛� sits at the origin of a spherical coordinate system 
(𝑟𝑟,𝜃𝜃,𝜑𝜑). In the surrounding free space, the dipole’s magnetic field is given by 

 𝑯𝑯(𝒓𝒓) = 𝑚𝑚0(2 cos 𝜃𝜃 𝒓𝒓� + sin𝜃𝜃 𝜽𝜽�) (4𝜋𝜋𝜇𝜇0𝑟𝑟3)⁄ . 

a) Considering that 𝑩𝑩(𝒓𝒓) = 𝜇𝜇0𝑯𝑯(𝒓𝒓) at 𝑟𝑟 ≠ 0, verify that Maxwell’s 4th equation, 𝜵𝜵 ∙ 𝑩𝑩(𝒓𝒓) = 0, is 
satisfied everywhere in the surrounding space. 

b) The standard formula for the divergence operator in spherical coordinates has a singularity at 
the origin, namely, at 𝑟𝑟 = 0. Apply the definition of divergence (i.e., integral of the vector 
field over the closed surface of a small volume, normalized by the volume) to verify that 
𝜵𝜵 ∙ 𝑩𝑩(𝒓𝒓) = 0 at the origin as well. Hint: ∫ sin𝜃𝜃 cos 𝜃𝜃 d𝜃𝜃𝜋𝜋

0
= 0. 

c) In accordance with Maxwell’s 2nd equation, confirm that 𝜵𝜵 × 𝑯𝑯(𝒓𝒓) = 0 everywhere in the 
dipole’s surrounding space. 

d) The standard formula for the curl operator in spherical coordinates has a singularity at the 
origin, namely, at 𝑟𝑟 = 0. Apply the definition of curl (i.e., integral of the vector field around 
three small, oriented loops, each normalized by the corresponding surface area) to verify that 
𝜵𝜵 × 𝑯𝑯(𝒓𝒓) = 0 at the origin as well. 

Hint: In spherical coordinates, the divergence and curl of the vector field 𝑽𝑽(𝒓𝒓) are given by 
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