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Opti 501 1st Midterm Solutions (9/26/2024) Time: 75 minutes 

Problem 1) a) The 𝐸𝐸-field of the point-charge 𝑞𝑞 must be along the straight line connecting the 
location of 𝑞𝑞 to the observation point 𝒓𝒓. Any deviation from this line would require a symmetry-
breaking internal structure for the point-charge, which is experimentally known to be lacking. 
Such a deviation from the direction of the straight line would also result in a nonzero integral of 
the 𝐸𝐸-field around a circular path, thus violating Maxwell’s third equation, 𝜵𝜵 × 𝑬𝑬 = 0. (For more 
detail, see Sec.2.9 of the textbook, and also Problem 2 of the first midterm exam, Fall 2021.) 

Drawing a sphere of radius 𝑟𝑟 centered at the point charge 𝑞𝑞, then applying Maxwell’s first 
equation 𝜵𝜵 ∙ 𝑫𝑫 = 𝜌𝜌free in integral form, namely, ∮ 𝑫𝑫 ∙ d𝑠𝑠

surface
= ∫ 𝜌𝜌freed𝑣𝑣

volume
= 𝑞𝑞, yields 

 𝑫𝑫(𝒓𝒓) = 𝜀𝜀0𝑬𝑬(𝒓𝒓) = 𝑞𝑞𝒓𝒓� (4𝜋𝜋𝑟𝑟2)⁄ . 

Consequently, 𝑬𝑬(𝒓𝒓) = 𝑞𝑞𝒓𝒓� (4𝜋𝜋𝜀𝜀0𝑟𝑟2)⁄ = 𝑞𝑞𝒓𝒓 (4𝜋𝜋𝜀𝜀0𝑟𝑟3)⁄ . 

b) 𝑬𝑬(𝒓𝒓) = (𝑞𝑞 4𝜋𝜋𝜀𝜀0⁄ )[𝑥𝑥𝒙𝒙� + 𝑦𝑦𝒚𝒚� + (𝑧𝑧 − 𝜁𝜁)𝒛𝒛�][𝑥𝑥2 + 𝑦𝑦2 + (𝑧𝑧 − 𝜁𝜁)2]−3 2⁄ . 

c) d𝑬𝑬(𝒓𝒓) d𝜁𝜁⁄ = (𝑞𝑞 4𝜋𝜋𝜀𝜀0⁄ ){−𝒛𝒛�[𝑥𝑥2 + 𝑦𝑦2 + (𝑧𝑧 − 𝜁𝜁)2]−3 2⁄  

 −(3 2⁄ )(−2)(𝑧𝑧 − 𝜁𝜁)[𝑥𝑥𝒙𝒙� + 𝑦𝑦𝒚𝒚� + (𝑧𝑧 − 𝜁𝜁)𝒛𝒛�][𝑥𝑥2 + 𝑦𝑦2 + (𝑧𝑧 − 𝜁𝜁)2]−5 2⁄ }. 
Therefore, 
 d𝑬𝑬(𝒓𝒓) d𝜁𝜁⁄ |𝜁𝜁=0 = (𝑞𝑞 4𝜋𝜋𝜀𝜀0⁄ )[−(𝒛𝒛� 𝑟𝑟3⁄ ) + 3𝑧𝑧(𝑟𝑟𝒓𝒓� 𝑟𝑟5⁄ )]. 

d) Substitution for 𝑧𝑧 and 𝒛𝒛� in terms of the spherical coordinates 𝑟𝑟,𝜃𝜃 and unit-vectors 𝒓𝒓� ,𝜽𝜽� yields 

 d𝑬𝑬(𝒓𝒓) d𝜁𝜁⁄ |𝜁𝜁=0 = (𝑞𝑞 4𝜋𝜋𝜀𝜀0⁄ )�−(cos𝜃𝜃𝒓𝒓� − sin𝜃𝜃 𝜽𝜽�) 𝑟𝑟3⁄ + 3𝑟𝑟 cos 𝜃𝜃 (𝒓𝒓� 𝑟𝑟4⁄ )� 

 = 𝑞𝑞(2 cos𝜃𝜃 𝒓𝒓� + sin𝜃𝜃 𝜽𝜽�) (4𝜋𝜋𝜀𝜀0𝑟𝑟3)⁄ . 

e) Taking ∆𝜁𝜁 to be sufficiently small that both sides of the preceding equation can be multiplied 
by d𝜁𝜁 = ∆𝜁𝜁, we now have the 𝐸𝐸-fields of two identical point-charges 𝑞𝑞 located at 𝑧𝑧 = ±∆𝜁𝜁 2⁄ , 
subtracted from each other. This, of course, is just the meaning of the derivative of 𝑬𝑬(𝒓𝒓) with 
respect to 𝜁𝜁, evaluated at 𝜁𝜁 = 0; it is tantamount to adding the 𝐸𝐸-fields at the observation point 𝒓𝒓 
of a pair of point-charges ±𝑞𝑞 located at 𝑧𝑧 = ±∆𝜁𝜁 2⁄ . The pair of point-charges ±𝑞𝑞 thus separated 
by ∆𝜁𝜁 at the origin of coordinates, constitute an electric dipole of magnitude 𝑝𝑝0 = 𝑞𝑞∆𝜁𝜁 located at 
the origin and aligned with the 𝑧𝑧-axis. The resulting dipole moment is, therefore, 𝒑𝒑 = 𝑝𝑝0𝒛𝒛�, whose 
𝐸𝐸-field is readily seen from the preceding equation to be 

 𝑬𝑬dipole(𝒓𝒓) = 𝑝𝑝0(2 cos 𝜃𝜃 𝒓𝒓� + sin𝜃𝜃 𝜽𝜽�) (4𝜋𝜋𝜀𝜀0𝑟𝑟3)⁄ . 

Problem 2) The 𝑆𝑆𝑆𝑆 unit of electrical current 𝑆𝑆 is 𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑟𝑟𝑎𝑎 (𝐴𝐴). Since 𝑆𝑆 = ∆𝑄𝑄 ∆𝑡𝑡⁄ , the unit of 
electrical charge 𝑄𝑄, known as 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐 (𝐶𝐶), is 𝐴𝐴 ∙ 𝑠𝑠. 

The unit of the electric charge-density 𝜌𝜌 is 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐 𝑎𝑎3⁄ = 𝐴𝐴 ∙ 𝑠𝑠 𝑎𝑎3⁄ . 

The surface electric charge-density 𝜎𝜎𝑠𝑠 has the units of 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐 𝑎𝑎2⁄ = 𝐴𝐴 ∙ 𝑠𝑠 𝑎𝑎2⁄ . 

The unit of the electric current-density 𝑱𝑱 (i.e., current per unit cross-sectional area) is 𝐴𝐴 𝑎𝑎2⁄ . 

The surface current-density 𝑱𝑱𝑠𝑠 has the units of 𝐴𝐴 𝑎𝑎⁄ . 
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The unit of the electric field 𝑬𝑬 is 𝑣𝑣𝑐𝑐𝑐𝑐𝑡𝑡 𝑎𝑎⁄ , which, from the 𝐸𝐸-field part of the Lorentz force law, 
𝒇𝒇 = 𝑞𝑞𝑬𝑬, equals 𝑛𝑛𝑎𝑎𝑛𝑛𝑡𝑡𝑐𝑐𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐⁄ , or 𝑘𝑘𝑘𝑘 ∙ 𝑎𝑎 (𝐴𝐴 ∙ 𝑠𝑠3)⁄ . 

The displacement field 𝑫𝑫 = 𝜀𝜀0𝑬𝑬 + 𝑷𝑷 has the same dimension as the polarization-density 𝑷𝑷 (i.e., 
electric dipole moment 𝑞𝑞𝒅𝒅 divided by volume), whose unit is 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐 𝑎𝑎2⁄ . Also, from 
𝜵𝜵 ∙ 𝑫𝑫 = 𝜌𝜌free, we find  the unit of 𝑫𝑫 to be 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐 𝑎𝑎2 = 𝐴𝐴 ∙ 𝑠𝑠 𝑎𝑎2⁄⁄ . 

The unit of the magnetic induction 𝑩𝑩 is 𝑛𝑛𝑎𝑎𝑐𝑐𝑎𝑎𝑟𝑟 𝑎𝑎2⁄ . From the 𝐵𝐵-field part of the Lorentz force 
law, 𝒇𝒇 = 𝑞𝑞𝑽𝑽 × 𝑩𝑩, the unit of 𝑩𝑩 is found to be 𝑛𝑛𝑎𝑎𝑛𝑛𝑡𝑡𝑐𝑐𝑛𝑛 ∙ 𝑠𝑠 (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐 ∙ 𝑎𝑎)⁄ = 𝑘𝑘𝑘𝑘 (𝐴𝐴 ∙ 𝑠𝑠2)⁄ . 

Invoking Maxwell’s equation 𝜵𝜵 × 𝑯𝑯 = 𝑱𝑱free + 𝜕𝜕𝑫𝑫 𝜕𝜕𝑡𝑡⁄ , the unit of the magnetic field 𝑯𝑯 is found 
to be 𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑟𝑟𝑎𝑎 𝑎𝑎⁄ = 𝐴𝐴 𝑎𝑎⁄ . This is because 𝜵𝜵 × 𝑯𝑯 has the dimension of 𝑯𝑯 divided by that of 
length (or distance in space). 

The unit of the Poynting vector 𝑺𝑺 , which represents the time-rate of flow of EM energy per unit 
area, is 𝑛𝑛𝑎𝑎𝑡𝑡𝑡𝑡 𝑎𝑎2⁄ = 𝑗𝑗𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎 (𝑠𝑠 ∙ 𝑎𝑎2)⁄ = (𝑛𝑛𝑎𝑎𝑛𝑛𝑡𝑡𝑐𝑐𝑛𝑛 ∙ 𝑎𝑎) (𝑠𝑠 ∙ 𝑎𝑎2)⁄ = 𝑘𝑘𝑘𝑘 𝑠𝑠3⁄ . 

The electromagnetic (EM) momentum-density 𝑺𝑺 𝑐𝑐2⁄  has the unit of 𝑺𝑺 (i.e., 𝑘𝑘𝑘𝑘 𝑠𝑠3⁄ ), divided by 
that of squared velocity (𝑎𝑎2 𝑠𝑠2⁄ ). Thus, the unit of the EM momentum-density is 𝑘𝑘𝑘𝑘 (𝑎𝑎2 ∙ 𝑠𝑠)⁄ . 
Needless to say, this is the unit of momentum (𝑘𝑘𝑘𝑘 ∙ 𝑎𝑎 𝑠𝑠⁄ ) divided by the unit of volume (𝑎𝑎3). 

Problem 3) a) In the absence of magnetization 𝑴𝑴 in the surrounding space (i.e., 𝑟𝑟 ≠ 0), we have 

 𝑩𝑩(𝒓𝒓) = 𝜇𝜇0𝑯𝑯(𝒓𝒓) = 𝑎𝑎0(2 cos𝜃𝜃 𝒓𝒓� + sin𝜃𝜃 𝜽𝜽�) (4𝜋𝜋𝑟𝑟3)⁄ . 
Consequently, 
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b) Take a small sphere of radius 𝑟𝑟 around the origin. The 𝐵𝐵-field component that is perpendicular 
to the surface of the sphere is 𝐵𝐵𝑟𝑟 = 𝑎𝑎0 cos 𝜃𝜃 (2𝜋𝜋𝑟𝑟3)⁄ . Integrating 𝐵𝐵𝑟𝑟 over this spherical surface, 
we find 
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c) The expression of the curl of 𝑯𝑯 in spherical coordinates can be simplified since 𝐻𝐻𝜑𝜑 = 0, and 
also because 𝐻𝐻𝑟𝑟 and 𝐻𝐻𝜃𝜃 do not depend on 𝜑𝜑. Therefore, 
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d) Shown in Fig.(a) is a small circle of radius 𝑟𝑟 
within the 𝑥𝑥𝑦𝑦-plane, centered at the origin of the 
coordinates. Neither the radial component 𝐻𝐻𝑟𝑟, nor 
the polar component 𝐻𝐻𝜃𝜃, contribute to the loop 
integral. Therefore, the loop integral of 𝑯𝑯 around 
this circle is zero, resulting in the 𝑧𝑧-component of 
𝜵𝜵 × 𝑯𝑯 at the origin being zero. Take a second 
small circle of radius 𝑟𝑟, again centered at the 
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origin, but this one perpendicular to the 𝑥𝑥𝑦𝑦-plane (i.e., containing the 𝑧𝑧-axis), as depicted in 
Fig.(b). The azimuthal orientation of the circle is irrelevant here, due to the circular symmetry of 
𝑯𝑯 around the 𝑧𝑧-axis. Thus, the circle could be parallel to the 𝑥𝑥𝑧𝑧-plane, or parallel to the 𝑦𝑦𝑧𝑧-plane, 
etc. The radial component 𝐻𝐻𝑟𝑟 of the 𝐻𝐻-field makes no contribution to the loop integral. The polar 
component 𝐻𝐻𝜃𝜃 contributes equally on the two semi-circles on either side of the 𝑧𝑧-axis; that is, 
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The integrals over the two semi-circles are seen to be equal in magnitude and opposite in 
sign and, therefore, to cancel out. The end result is that the integral of 𝑯𝑯 around any circular loop 
centered at the origin of coordinates and containing the 𝑧𝑧-axis is zero. All in all, we have now 
demonstrated that the curl of 𝑯𝑯 evaluated at the origin of the coordinates is exactly equal to zero. 
 


