Problem 1) a) The *E*-field of the point-charge *q* must be along the straight line connecting the location of *q* to the observation point *r*. Any deviation from this line would require a symmetrybreaking internal structure for the point-charge, which is experimentally known to be lacking. Such a deviation from the direction of the straight line would also result in a nonzero integral of the *E*-field around a circular path, thus violating Maxwell's third equation, $\nabla \times E = 0$. (For more detail, see Sec.2.9 of the textbook, and also Problem 2 of the first midterm exam, Fall 2021.)

Drawing a sphere of radius *r* centered at the point charge *q*, then applying Maxwell's first equation $\nabla \cdot \mathbf{D} = \rho_{\text{free}}$ in integral form, namely, $\oint_{\text{surface}} \mathbf{D} \cdot ds = \int_{\text{volume}} \rho_{\text{free}} dv = q$, yields

$$\boldsymbol{D}(\boldsymbol{r}) = \varepsilon_0 \boldsymbol{E}(\boldsymbol{r}) = q \hat{\boldsymbol{r}} / (4\pi r^2)$$

Consequently, $\boldsymbol{E}(\boldsymbol{r}) = q\hat{\boldsymbol{r}}/(4\pi\varepsilon_0r^2) = q\boldsymbol{r}/(4\pi\varepsilon_0r^3).$

b)
$$E(\mathbf{r}) = (q/4\pi\varepsilon_0)[x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + (z-\zeta)\hat{\mathbf{z}}][x^2 + y^2 + (z-\zeta)^2]^{-3/2}.$$

c)
$$d\boldsymbol{E}(\boldsymbol{r})/d\zeta = (q/4\pi\varepsilon_0)\{-\hat{\boldsymbol{z}}[x^2 + y^2 + (z-\zeta)^2]^{-3/2} - (3/2)(-2)(z-\zeta)[x\hat{\boldsymbol{x}} + y\hat{\boldsymbol{y}} + (z-\zeta)\hat{\boldsymbol{z}}][x^2 + y^2 + (z-\zeta)^2]^{-5/2}\}.$$

Therefore,

$$|\mathbf{d}\boldsymbol{E}(\boldsymbol{r})/\mathbf{d}\boldsymbol{\zeta}|_{\boldsymbol{\zeta}=0} = (q/4\pi\varepsilon_0)[-(\hat{\boldsymbol{z}}/r^3) + 3z(r\hat{\boldsymbol{r}}/r^5)].$$

d) Substitution for z and \hat{z} in terms of the spherical coordinates r, θ and unit-vectors $\hat{r}, \hat{\theta}$ yields

$$d\boldsymbol{E}(\boldsymbol{r})/d\boldsymbol{\zeta}|_{\boldsymbol{\zeta}=0} = (q/4\pi\varepsilon_0) \Big[-(\cos\theta\hat{\boldsymbol{r}} - \sin\theta\,\widehat{\boldsymbol{\theta}})/r^3 + 3r\cos\theta\,(\hat{\boldsymbol{r}}/r^4) \Big]$$
$$= q(2\cos\theta\,\hat{\boldsymbol{r}} + \sin\theta\,\widehat{\boldsymbol{\theta}})/(4\pi\varepsilon_0r^3).$$

e) Taking $\Delta \zeta$ to be sufficiently small that both sides of the preceding equation can be multiplied by $d\zeta = \Delta \zeta$, we now have the *E*-fields of two identical point-charges *q* located at $z = \pm \Delta \zeta/2$, subtracted from each other. This, of course, is just the meaning of the derivative of $E(\mathbf{r})$ with respect to ζ , evaluated at $\zeta = 0$; it is tantamount to adding the *E*-fields at the observation point \mathbf{r} of a pair of point-charges $\pm q$ located at $z = \pm \Delta \zeta/2$. The pair of point-charges $\pm q$ thus separated by $\Delta \zeta$ at the origin of coordinates, constitute an electric dipole of magnitude $p_0 = q\Delta \zeta$ located at the origin and aligned with the *z*-axis. The resulting dipole moment is, therefore, $\mathbf{p} = p_0 \hat{\mathbf{z}}$, whose *E*-field is readily seen from the preceding equation to be

$$\boldsymbol{E}_{\text{dipole}}(\boldsymbol{r}) = p_0(2\cos\theta\,\hat{\boldsymbol{r}} + \sin\theta\,\widehat{\boldsymbol{\theta}})/(4\pi\varepsilon_0r^3).$$

Problem 2) The *SI* unit of electrical current *I* is *ampere* (*A*). Since $I = \Delta Q / \Delta t$, the unit of electrical charge *Q*, known as *coulomb* (*C*), is $A \cdot s$.

The unit of the electric charge-density ρ is *coulomb*/ $m^3 = A \cdot s/m^3$.

The surface electric charge-density σ_s has the units of $coulomb/m^2 = A \cdot s/m^2$.

The unit of the electric current-density J (i.e., current per unit cross-sectional area) is A/m^2 .

The surface current-density J_s has the units of A/m.

The unit of the electric field *E* is *volt/m*, which, from the *E*-field part of the Lorentz force law, f = qE, equals *newton/coulomb*, or $kg \cdot m/(A \cdot s^3)$.

The displacement field $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$ has the same dimension as the polarization-density \mathbf{P} (i.e., electric dipole moment $q\mathbf{d}$ divided by volume), whose unit is $coulomb/m^2$. Also, from $\nabla \cdot \mathbf{D} = \rho_{\text{free}}$, we find the unit of \mathbf{D} to be $coulomb/m^2 = A \cdot s/m^2$.

The unit of the magnetic induction **B** is weber/ m^2 . From the *B*-field part of the Lorentz force law, $f = qV \times B$, the unit of **B** is found to be newton $\cdot s/(coulomb \cdot m) = kg/(A \cdot s^2)$.

Invoking Maxwell's equation $\nabla \times H = J_{\text{free}} + \partial D/\partial t$, the unit of the magnetic field H is found to be *ampere/m* = A/m. This is because $\nabla \times H$ has the dimension of H divided by that of length (or distance in space).

The unit of the Poynting vector S, which represents the time-rate of flow of EM energy per unit area, is $watt/m^2 = joule/(s \cdot m^2) = (newton \cdot m)/(s \cdot m^2) = kg/s^3$.

The electromagnetic (EM) momentum-density S/c^2 has the unit of S (i.e., kg/s^3), divided by that of squared velocity (m^2/s^2) . Thus, the unit of the EM momentum-density is $kg/(m^2 \cdot s)$. Needless to say, this is the unit of momentum $(kg \cdot m/s)$ divided by the unit of volume (m^3) .

Problem 3) a) In the absence of magnetization **M** in the surrounding space (i.e., $r \neq 0$), we have

$$\boldsymbol{B}(\boldsymbol{r}) = \mu_0 \boldsymbol{H}(\boldsymbol{r}) = m_0 (2\cos\theta \,\hat{\boldsymbol{r}} + \sin\theta \,\hat{\boldsymbol{\theta}}) / (4\pi r^3)$$

Consequently,

$$\nabla \cdot \boldsymbol{B} = \left(\frac{m_0}{4\pi}\right) \left[\frac{\partial(2\cos\theta/r)}{r^2\partial r} + \frac{1}{r\sin\theta} \frac{\partial(\sin^2\theta/r^3)}{\partial\theta}\right] = \left(\frac{m_0}{4\pi}\right) \left(-\frac{2\cos\theta}{r^4} + \frac{2\sin\theta\cos\theta}{r^4\sin\theta}\right) = 0.$$

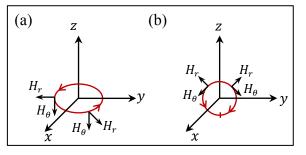
b) Take a small sphere of radius r around the origin. The *B*-field component that is perpendicular to the surface of the sphere is $B_r = m_0 \cos \theta / (2\pi r^3)$. Integrating B_r over this spherical surface, we find

$$\oint_{\text{surface}} \boldsymbol{B}(\boldsymbol{r}) \cdot d\boldsymbol{s} = \int_{\theta=0}^{\pi} \left(\frac{m_0 \cos \theta}{2\pi r^3}\right) 2\pi r^2 \sin \theta \, d\theta = (m_0/r) \int_{\theta=0}^{\pi} \sin \theta \cos \theta \, d\theta$$
$$= (m_0/2r) \sin^2 \theta |_{\theta=0}^{\pi} = 0.$$

c) The expression of the curl of **H** in spherical coordinates can be simplified since $H_{\varphi} = 0$, and also because H_r and H_{θ} do not depend on φ . Therefore,

$$\nabla \times \boldsymbol{H} = \frac{1}{r} \left[\frac{\partial (rH_{\theta})}{\partial r} - \frac{\partial H_{r}}{\partial \theta} \right] \widehat{\boldsymbol{\varphi}} = \left(\frac{m_{0}}{4\pi\mu_{0}r} \right) \left[\frac{\partial (\sin\theta/r^{2})}{\partial r} - \frac{\partial (2\cos\theta/r^{3})}{\partial \theta} \right] \widehat{\boldsymbol{\varphi}}$$
$$= \left(\frac{m_{0}}{4\pi\mu_{0}r} \right) \left(-\frac{2\sin\theta}{r^{3}} + \frac{2\sin\theta}{r^{3}} \right) \widehat{\boldsymbol{\varphi}} = 0.$$

d) Shown in Fig.(a) is a small circle of radius r within the *xy*-plane, centered at the origin of the coordinates. Neither the radial component H_r , nor the polar component H_{θ} , contribute to the loop integral. Therefore, the loop integral of H around this circle is zero, resulting in the *z*-component of $\nabla \times H$ at the origin being zero. Take a second small circle of radius r, again centered at the



origin, but this one perpendicular to the *xy*-plane (i.e., containing the *z*-axis), as depicted in Fig.(b). The azimuthal orientation of the circle is irrelevant here, due to the circular symmetry of *H* around the *z*-axis. Thus, the circle could be parallel to the *xz*-plane, or parallel to the *yz*-plane, etc. The radial component H_r of the *H*-field makes no contribution to the loop integral. The polar component H_{θ} contributes equally on the two semi-circles on either side of the *z*-axis; that is,

$$\pm \int_{\theta=0}^{\pi} H_{\theta} r \mathrm{d}\theta = \pm \left(\frac{m_0}{4\pi\mu_0 r^2}\right) \int_{\theta=0}^{\pi} \sin\theta \,\mathrm{d}\theta = \pm \left(\frac{m_0}{4\pi\mu_0 r^2}\right) (-\cos\theta)_{\theta=0}^{\pi} = \pm \frac{m_0}{2\pi\mu_0 r^2}.$$

The integrals over the two semi-circles are seen to be equal in magnitude and opposite in sign and, therefore, to cancel out. The end result is that the integral of H around any circular loop centered at the origin of coordinates and containing the z-axis is zero. All in all, we have now demonstrated that the curl of H evaluated at the origin of the coordinates is exactly equal to zero.