Opti 501 1* Midterm Solutions (9/26/2024) Time: 75 minutes

Problem 1) a) The E-field of the point-charge g must be along the straight line connecting the
location of g to the observation point r. Any deviation from this line would require a symmetry-
breaking internal structure for the point-charge, which is experimentally known to be lacking.
Such a deviation from the direction of the straight line would also result in a nonzero integral of
the E-field around a circular path, thus violating Maxwell’s third equation, V X E = 0. (For more
detail, see Sec.2.9 of the textbook, and also Problem 2 of the first midterm exam, Fall 2021.)
Drawing a sphere of radius r centered at the point charge g, then applying Maxwell’s first
equation V - D = py,., in integral form, namely, ¢ D-ds= | PrreedV = q, yields

surface volume
D(r) = ¢,E(r) = qt/(4nr?).
Consequently, E(r) = q7/(4ne,r?) = qr/(4me,r).

b) E(r) = (q/4ne)[xX + yy + (z — O2][x* + y* + (z — OH*] 2.

c) dE(r)/d{ = (q/4me){—2[x* +y* + (z — {)*]™*

~B/2)(=2)(z - DX +yy + (z = D2][x* + y* + (z = {)*] 7}
Therefore,

dE(r)/d¢l,ee = (q/4me)[—(2/7°) + 32(r#/r)].

d) Substitution for z and 2 in terms of the spherical coordinates r, 8 and unit-vectors #, 8 yields
dE(r)/d{l,-, = (q/4me,)[—(cos OF —sin 0 8) /1> + 3rcos 6 (7/r*)]
= q(2cos @7 +sin6 8)/(4me,r?).

e) Taking A{ to be sufficiently small that both sides of the preceding equation can be multiplied
by d{ = A{, we now have the E-fields of two identical point-charges q located at z = +A{/2,
subtracted from each other. This, of course, is just the meaning of the derivative of E(r) with
respect to {, evaluated at { = 0; it is tantamount to adding the E-fields at the observation point r
of a pair of point-charges +q located at z = +A{ /2. The pair of point-charges +q thus separated
by A{ at the origin of coordinates, constitute an electric dipole of magnitude p, = qA{ located at
the origin and aligned with the z-axis. The resulting dipole moment is, therefore, p = p,Z, whose
E-field is readily seen from the preceding equation to be

Eipore(T) = py(2 cos 0 7 + sin 0 8) / (4me,r).

Problem 2) The SI unit of electrical current I is ampere (A). Since I = AQ/At, the unit of
electrical charge Q, known as coulomb (C),is A - s.

The unit of the electric charge-density p is coulomb/m3 = A-s/m3.
The surface electric charge-density o has the units of coulomb/m? = A -s/m?.
The unit of the electric current-density J (i.e., current per unit cross-sectional area) is A/m?.

The surface current-density J¢ has the units of A/m.
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The unit of the electric field E is volt/m, which, from the E-field part of the Lorentz force law,
f = qE, equals newton/coulomb, or kg - m/(A - s3).

The displacement field D = ¢,E + P has the same dimension as the polarization-density P (i.e.,
electric dipole moment gd divided by volume), whose unit is coulomb/m?. Also, from
VD = p.e., we find the unit of D to be coulomb/m? = A-s/m?.

The unit of the magnetic induction B is weber /m?. From the B-field part of the Lorentz force
law, f = qV X B, the unit of B is found to be newton - s/(coulomb - m) = kg/(A - s?).

Invoking Maxwell’s equation V X H = J... + dD/0dt, the unit of the magnetic field H is found
to be ampere/m = A/m. This is because V X H has the dimension of H divided by that of
length (or distance in space).

The unit of the Poynting vector S , which represents the time-rate of flow of EM energy per unit
area, is watt/m? = joule/(s - m?) = (newton-m)/(s-m?) = kg/s3.

The electromagnetic (EM) momentum-density S/c? has the unit of § (i.e., kg/s®), divided by
that of squared velocity (m?/s?). Thus, the unit of the EM momentum-density is kg/(m? - s).
Needless to say, this is the unit of momentum (kg - m/s) divided by the unit of volume (m?3).

Problem 3) a) In the absence of magnetization M in the surrounding space (i.e., r # 0), we have

B(r) = u, H(@) = my(2 cos 8 # + sin 6 8) / (4rr3).
Consequently,

V-B= (ﬂ) [6(2c059/r) n 1 6(sin;:/r3)] _ (%) (_ZCOSQ n Zsinecose) — 0.

41 r2or rsin@ r r*sin@

b) Take a small sphere of radius r around the origin. The B-field component that is perpendicular
to the surface of the sphere is B, = m, cos 8/(2nr3). Integrating B, over this spherical surface,
we find

(mo cos 6
2mr3

iurfaceB(r) rds = f ) 27.”.2 sing df = (mo/r) fgﬂ;o sin @ cos 6 d@

6=0
= (m,/2r)sin?0|7_, = 0.
¢) The expression of the curl of H in spherical coordinates can be simplified since H, = 0, and
also because H,- and Hy do not depend on ¢. Therefore,

9(rHg) %] ~ ( mg ) [a(sin9/r2) _ 9(2cos 9/r3)] A~
or a0 o ATTUGT or a0 g

my 2sin®  2sin 9) ~
= - = 0.
(471;107‘) ( r3 + r3 P

d) Shown in Fig.(a) is a small circle of radius r

VxH:l[

r

within the xy-plane, centered at the origin of the z
coordinates. Neither the radial component H,., nor

the polar component Hy, contribute to the loop H, H,
integral. Therefore, the loop integral of H around i, H,

this circle is zero, resulting in the z-component of
V x H at the origin being zero. Take a second
small circle of radius r, again centered at the
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origin, but this one perpendicular to the xy-plane (i.e., containing the z-axis), as depicted in
Fig.(b). The azimuthal orientation of the circle is irrelevant here, due to the circular symmetry of
H around the z-axis. Thus, the circle could be parallel to the xz-plane, or parallel to the yz-plane,
etc. The radial component H,. of the H-field makes no contribution to the loop integral. The polar
component Hy contributes equally on the two semi-circles on either side of the z-axis; that is,
if::OHerdG = +( ! )fn sinf dg = +( —0 )(—cosH)’gz(J = 4+_0

— \4mpuyr2/ Jo=0 — \4muyr? _Znuorz'

The integrals over the two semi-circles are seen to be equal in magnitude and opposite in
sign and, therefore, to cancel out. The end result is that the integral of H around any circular loop
centered at the origin of coordinates and containing the z-axis is zero. All in all, we have now
demonstrated that the curl of H evaluated at the origin of the coordinates is exactly equal to zero.
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