Temporal Evolution of a Harmonic Oscillator

Consider a harmonic oscillator consisting of a particle of mass m,

subject to the gravitational force mg [units: N = kg - m/s?] and hanging ic\
from a spring whose real and positive spring constant is a [units: N/m].
The dynamic friction coefficient of the system is the positive real constant
B [units: N - s/m]. The equation of motion along the x-axis is given by 0T
Newton’s second law, f = ma, as follows: —mg/a+
—mgx — ax(t)x — Bx(t)x = mi(t)x
mg
- X+ B/m)x@) + (a/m)x(t) + g = 0. (D

The equilibrium position of the particle is readily seen from Eq.(1) to be x = —mg/a. Let
the initial position and velocity of the particle at t = 0 be specified as x(0) = x, and x(0) = 0,
respectively. Taking the temporal variations of x(t) to be in the form of the exponential function
Ae" (with the parameters A and 7 as yet undetermined), we conjecture that

x(t) = —(mg/a) + Ae™. )

Substituting the above x(t) into Eq.(1), we find
[7? + (B/m)n + (a/m)]Ae™ = 0. 3)
The quadratic expression on the left-hand side of Eq.(3) is found to have the following two roots:
nt = —(B/2m) | (B/2m)? - (a/m). 4)

Considering that the equation of motion, Eq.(1), is linear, both solutions n* and = can be
accepted, with a linear combination of two exponential solutions (albeit with different
coefficients) replacing the term Ae” in Eq.(2). Thus, the general form of the solution of Eq.(1) is

x(t) = —(mg/a) + Ae"t + Be"t. (5)
The coefficients A and B may now be found by enforcing the initial conditions; that is,
) x(t=0)=(An*e"t+Bn7e" )|, _ =0 - B=—An*/n". (6)

i) x(t=0)=-(mg/a)+ A+ B =x, -  A-(AnT/n7) =x,+ (mg/a). (7)
Consequently,

4 = otma/@n” _ [xot(mg/ W —smarp)  p _ liot(mg/olo/FP—amap) g

n-—nt 2 B%—-4ama 2 B%—-4ma
Substitution into Eq.(5) yields
x(t) = —(mg/a) + %lx, + (mg/a)]e~Ft/>m

__B__\ _JF—4mat/2m ( _L) /BT =amat/2m
x[(1+ _ﬁz_ma)e +(1-=E=)e )

It is straightforward to verify that the above x(t) satisfies x(0) = x, and x(0) = 0. In the
case of an over-damped system, where 2 > 4ma, Eq.(9) shows that, with increasing time, x(t)
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decays exponentially with two different time-constants 7+ = 2m/(8 F /% — 4ma).” In the

case of an under-damped system, where % < 4ma, we will have \/ B? —4dma = i\/ 4ma — B?
and, therefore,

x(t) = —(mg/a) + %[x, + (mg/a)]e-Ft/2m

X [(1 _ Mii_ﬁz) ei~/4m0{—[32t/2m + (1 + Mrii_ﬁ2>e—i«/4ma—ﬁzt/2m]. (10)

Note that the two complex terms inside the square brackets on the right-hand side of Eq.(10)
are conjugates and that, therefore, the overall solution x(t) is real-valued. To simplify the above

expression of x(t), we introduce the complex constant C, as follows: AV
C=|Cle! =1+——L— B ¢
I |e /4ma_'82 ’4ma—ﬁ2 :
1
_ B2 v _ ama \% _ 1 ( B ¢=
- lCI - (1 + 4ma—ﬁz) - (4ma—ﬂ2) , ¢ =tan 1/4ma—/3’2)' (11) i > X
In streamlined form, Eq.(10) now becomes

x(t) = —(mg/a) + Y[x, + (ng/a)]e Ft/2m
x (IClemi®eltmaFre/zm 4 |c|eidiyama-fre/zm)

- x(t) = —(mg/a) + [x, + (mg/a)]|C|e Ft/2m cos[(,/4ma — ,82/2m)t — gb]. (12)

As before, it is easy to verify that the above x(t) satisfies the initial conditions x(0) = x,
and x(0) = 0. In this under-damped regime, the particle oscillates around its equilibrium
position with frequency w = /(a/m) — (8/2m)? and initial amplitude [x, + (mg/a)]|C| cos ¢ =
x, + (mg/a) at t = 0. The oscillation amplitude decays exponentially with a time-constant of
T = 2m/p as time progresses.

T For a critically-damped system, where 2 = 4ma, we will have n* = n~ = —f/2m. The homogeneous solutions
of the equation of motion in this case will be Ae~#t/2™ and Bte~F*/?™_ Enforcing the initial conditions then yields
A =x,+ (mg/a) and B = (8/2m)A. Consequently, x(t) = —(mg/a) + [x, + (mg/a)][1 + (B/2m)t]eFt/?m
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