Temporal Evolution of a Harmonic Oscillator

Consider a harmonic oscillator consisting of a particle of mass m , subject to the gravitational force mg [units: $N = kg \cdot m/s^2$] and hanging from a spring whose real and positive spring constant is α [units: N/m]. The dynamic friction coefficient of the system is the positive real constant β [units: $N \cdot s/m$]. The equation of motion along the x-axis is given by Newton's second law, $f = ma$, as follows:

$$
-mg\hat{x} - \alpha x(t)\hat{x} - \beta \dot{x}(t)\hat{x} = m\ddot{x}(t)\hat{x}
$$

\n
$$
\rightarrow \ddot{x}(t) + (\beta/m)\dot{x}(t) + (\alpha/m)x(t) + g = 0.
$$
 (1)

The equilibrium position of the particle is readily seen from Eq.(1) to be $x = -mg/\alpha$. Let the initial position and velocity of the particle at $t = 0$ be specified as $x(0) = x_0$ and $\dot{x}(0) = 0$, respectively. Taking the temporal variations of $x(t)$ to be in the form of the exponential function $Ae^{\eta t}$ (with the parameters A and η as yet undetermined), we conjecture that

$$
x(t) = -(mg/\alpha) + Ae^{\eta t}.
$$
 (2)

Substituting the above $x(t)$ into Eq.(1), we find

$$
[\eta^2 + (\beta/m)\eta + (\alpha/m)]Ae^{\eta t} = 0.
$$
 (3)

The quadratic expression on the left-hand side of Eq.(3) is found to have the following two roots:

$$
\eta^{\pm} = -(\beta/2m) \pm \sqrt{(\beta/2m)^2 - (\alpha/m)}.
$$
 (4)

Considering that the equation of motion, Eq.(1), is linear, both solutions η^+ and η^- can be accepted, with a linear combination of two exponential solutions (albeit with different coefficients) replacing the term $Ae^{\eta t}$ in Eq.(2). Thus, the general form of the solution of Eq.(1) is

$$
x(t) = -(mg/\alpha) + Ae^{\eta^+t} + Be^{\eta^-t}.
$$
\n(5)

The coefficients A and B may now be found by enforcing the initial conditions; that is,

i)
$$
\dot{x}(t=0) = (A\eta^+e^{\eta^+t} + B\eta^-e^{\eta^-t})\big|_{t=0} = 0 \rightarrow B = -A\eta^+/\eta^-.
$$
 (6)

ii)
$$
x(t = 0) = -(mg/\alpha) + A + B = x_0 \rightarrow A - (A\eta^+/\eta^-) = x_0 + (mg/\alpha).
$$
 (7)

Consequently,

$$
A = \frac{[x_0 + (mg/\alpha)]\eta^-}{\eta^- - \eta^+} = \frac{[x_0 + (mg/\alpha)](\sqrt{\beta^2 - 4m\alpha} + \beta)}{2\sqrt{\beta^2 - 4m\alpha}}, \qquad B = \frac{[x_0 + (mg/\alpha)](\sqrt{\beta^2 - 4m\alpha} - \beta)}{2\sqrt{\beta^2 - 4m\alpha}}.\tag{8}
$$

Substitution into Eq.(5) yields

$$
x(t) = -(mg/\alpha) + \frac{1}{2}[x_0 + (mg/\alpha)]e^{-\beta t/2m}
$$

$$
\times \left[\left(1 + \frac{\beta}{\sqrt{\beta^2 - 4ma}} \right) e^{\sqrt{\beta^2 - 4ma}t/2m} + \left(1 - \frac{\beta}{\sqrt{\beta^2 - 4ma}} \right) e^{-\sqrt{\beta^2 - 4ma}t/2m} \right].
$$
 (9)

It is straightforward to verify that the above $x(t)$ satisfies $x(0) = x_0$ and $\dot{x}(0) = 0$. In the case of an over-damped system, where $\beta^2 > 4m\alpha$, Eq.(9) shows that, with increasing time, $x(t)$

decays exponentially with two different time-constants $\tau^{\pm} = 2m/(\beta \mp \sqrt{\beta^2 - 4m\alpha})$.^{[†](#page-1-0)} In the case of an under-damped system, where $\beta^2 < 4m\alpha$, we will have $\sqrt{\beta^2 - 4m\alpha} = i\sqrt{4m\alpha - \beta^2}$ and, therefore,

$$
x(t) = -(mg/\alpha) + \frac{1}{2}[x_0 + (mg/\alpha)]e^{-\beta t/2m}
$$

$$
\times \left[\left(1 - \frac{i\beta}{\sqrt{4m\alpha - \beta^2}} \right) e^{i\sqrt{4m\alpha - \beta^2}t/2m} + \left(1 + \frac{i\beta}{\sqrt{4m\alpha - \beta^2}} \right) e^{-i\sqrt{4m\alpha - \beta^2}t/2m} \right]. \quad (10)
$$

Note that the two complex terms inside the square brackets on the right-hand side of Eq.(10) are conjugates and that, therefore, the overall solution $x(t)$ is real-valued. To simplify the above expression of $x(t)$, we introduce the complex constant C, as follows: \lceil λ ^{*y*}

$$
C = |C|e^{i\phi} = 1 + \frac{i\beta}{\sqrt{4m\alpha - \beta^2}}
$$

\n
$$
\rightarrow |C| = \left(1 + \frac{\beta^2}{4m\alpha - \beta^2}\right)^{\frac{1}{2}} = \left(\frac{4m\alpha}{4m\alpha - \beta^2}\right)^{\frac{1}{2}}, \quad \phi = \tan^{-1}\left(\frac{\beta}{\sqrt{4m\alpha - \beta^2}}\right). (11)
$$

\nIn streamlined form, Eq.(10) now becomes

In streamlined form, Eq.(10) now becomes

 \overline{a}

$$
x(t) = -(mg/\alpha) + \frac{1}{2}[x_0 + (mg/\alpha)]e^{-\beta t/2m}
$$

$$
\times \left(|C|e^{-i\phi}e^{i\sqrt{4ma - \beta^2}t/2m} + |C|e^{i\phi}e^{-i\sqrt{4ma - \beta^2}t/2m} \right)
$$

$$
\to x(t) = -(mg/\alpha) + [x_0 + (mg/\alpha)]|C|e^{-\beta t/2m} \cos[(\sqrt{4ma - \beta^2}/2m)t - \phi]. \tag{12}
$$

As before, it is easy to verify that the above $x(t)$ satisfies the initial conditions $x(0) = x_0$ and $\dot{x}(0) = 0$. In this under-damped regime, the particle oscillates around its equilibrium position with frequency $\omega = \sqrt{(\alpha/m) - (\beta/2m)^2}$ and initial amplitude $[x_0 + (mg/\alpha)] | C | \cos \phi =$ $x_0 + (mg/\alpha)$ at $t = 0$. The oscillation amplitude decays exponentially with a time-constant of $\tau = 2m/\beta$ as time progresses.

[†] For a critically-damped system, where $\beta^2 = 4m\alpha$, we will have $\eta^+ = \eta^- = -\beta/2m$. The homogeneous solutions of the equation of motion in this case will be $Ae^{-\beta t/2m}$ and $Bte^{-\beta t/2m}$. Enforcing the initial conditions then yields $A = x_0 + (mg/\alpha)$ and $B = (\beta/2m)A$. Consequently, $x(t) = -(mg/\alpha) + [x_0 + (mg/\alpha)][1 + (\beta/2m)t]e^{-\beta t/2m}$.