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PhD Qualifying Exam Opti 501 Fall 2022 
 
Solution to Problem 1) 

a) 𝒌𝒌 = (𝜔𝜔 𝑐𝑐⁄ )𝜿𝜿�. 

b) 𝜵𝜵 ∙ 𝑫𝑫 = 𝜌𝜌free   →     𝜵𝜵 ∙ (𝜀𝜀0𝑬𝑬 + 𝑷𝑷) = 𝜌𝜌free  →     𝜵𝜵 ∙ 𝑬𝑬(𝒓𝒓, 𝑡𝑡) = 0   →   i𝒌𝒌 ∙ 𝑬𝑬0𝑒𝑒i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔) = 0 

 →    i(𝜔𝜔 𝑐𝑐⁄ )𝜿𝜿� ∙ 𝑬𝑬0𝑒𝑒i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔) = 0  →     𝜿𝜿� ∙ 𝑬𝑬0 = 0   →    𝜿𝜿� ∙ (𝑬𝑬0
′ + i𝑬𝑬0

″) = 0 

 →     (𝜿𝜿� ∙ 𝑬𝑬0
′ ) + i(𝜿𝜿� ∙ 𝑬𝑬0

″) = 0         →     𝜿𝜿� ∙ 𝑬𝑬0
′ = 0   and   𝜿𝜿� ∙ 𝑬𝑬0

″ = 0. 

c) 𝑅𝑅𝑅𝑅 �(𝑬𝑬0
′ + i𝑬𝑬0

″)𝑒𝑒i�𝒌𝒌 ∙ 𝒓𝒓 – 𝜔𝜔𝜔𝜔�� = 𝑅𝑅𝑅𝑅{(𝑬𝑬0
′ + i𝑬𝑬0

″)[cos(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔) + i sin(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔)]} 

 = 𝑬𝑬0
′ cos(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔) − 𝑬𝑬0

″ sin(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔). 

 At any given point 𝒓𝒓 = 𝒓𝒓0, the 𝐸𝐸-field is a function of time. When sin(𝒌𝒌 ∙ 𝒓𝒓0 − 𝜔𝜔𝜔𝜔) = 0, we 
will have cos(𝒌𝒌 ∙ 𝒓𝒓0 − 𝜔𝜔𝜔𝜔) = ±1, in which case the field has its maximum amplitude along 𝑬𝑬0

′ . 
And when cos(𝒌𝒌 ∙ 𝒓𝒓0 − 𝜔𝜔𝜔𝜔) = 0, we have sin(𝒌𝒌 ∙ 𝒓𝒓0 − 𝜔𝜔𝜔𝜔) = ±1, in which case the field has its 
maximum amplitude along 𝑬𝑬0

″. During each cycle of oscillation, the 
tip of the 𝐸𝐸-field vector traces an elliptical trajectory, as depicted in 
the figure. The plane-wave is linearly polarized when either 𝑬𝑬0

′ = 0 
or 𝑬𝑬0

″ = 0, or when 𝑬𝑬0
′  and 𝑬𝑬0

″ are parallel (or anti-parallel) to each 
other. The plane-wave is circularly polarized when 𝑬𝑬0

′  and 𝑬𝑬0
″ are 

perpendicular to each other and have equal magnitudes. Considering 
that the tip of the 𝐸𝐸-field vector travels from 𝑬𝑬0

′  toward 𝑬𝑬0
″, the 

plane-wave will be right or left circularly polarized depending on the 
relative orientation of these two vectors.  

d) 𝜵𝜵 × 𝑬𝑬 = −𝜕𝜕𝑩𝑩 𝜕𝜕𝜕𝜕⁄   →     i𝒌𝒌 × 𝑬𝑬0𝑒𝑒i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔) = i𝜔𝜔𝜇𝜇0𝑯𝑯0𝑒𝑒i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔) 

 →  𝜇𝜇0𝜔𝜔𝑯𝑯0 = (𝜔𝜔 𝑐𝑐⁄ )𝜿𝜿� × 𝑬𝑬0  →  𝑯𝑯0 = 𝜿𝜿� × 𝑬𝑬0 𝜇𝜇0𝑐𝑐⁄   →  𝑯𝑯0 = 𝜿𝜿� × 𝑬𝑬0 𝑍𝑍0⁄ . 

e) ℰ𝐸𝐸(𝒓𝒓, 𝑡𝑡) = ½𝜀𝜀0|𝑅𝑅𝑅𝑅[𝑬𝑬(𝒓𝒓, 𝑡𝑡)]|2 = ½𝜀𝜀0|𝑬𝑬0
′ cos(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔)− 𝑬𝑬0

″ sin(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔)|2 

 = ½𝜀𝜀0{𝑬𝑬0
′ ∙ 𝑬𝑬0

′ cos2(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔) + 𝑬𝑬0
″ ∙ 𝑬𝑬0

″ sin2(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔)− 𝑬𝑬0
′ ∙ 𝑬𝑬0

″ sin[2(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔)]} 

 = ¼𝜀𝜀0{(𝑬𝑬0
′ ∙ 𝑬𝑬0

′ + 𝑬𝑬0
″ ∙ 𝑬𝑬0

″) + (𝑬𝑬0
′ ∙ 𝑬𝑬0

′ − 𝑬𝑬0
″ ∙ 𝑬𝑬0

″) cos[2(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔)] − 2𝑬𝑬0
′ ∙ 𝑬𝑬0

″ sin[2(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔)]}. 

Upon time-averaging, the oscillatory terms of the above expression vanish, yielding 
〈ℰ𝐸𝐸(𝒓𝒓, 𝑡𝑡)〉 = ¼𝜀𝜀0(𝑬𝑬0

′ ∙ 𝑬𝑬0
′ + 𝑬𝑬0

″ ∙ 𝑬𝑬0
″), which can equivalently be written as 〈ℰ𝐸𝐸(𝒓𝒓, 𝑡𝑡)〉 = ¼𝜀𝜀0𝑬𝑬0 ∙ 𝑬𝑬0

∗. 
A similar procedure applied to the 𝐻𝐻-field yields 

 〈ℰ𝐻𝐻(𝒓𝒓, 𝑡𝑡)〉 = ½𝜇𝜇0〈|𝑅𝑅𝑅𝑅[𝑯𝑯(𝒓𝒓, 𝑡𝑡)]|2〉 = ¼𝜇𝜇0𝑯𝑯0 ∙ 𝑯𝑯0
∗ = ¼(𝜇𝜇0 𝑍𝑍02⁄ )(𝜿𝜿� × 𝑬𝑬0) ∙ (𝜿𝜿� × 𝑬𝑬0

∗) 

 = ¼𝜀𝜀0𝜿𝜿� ∙ [𝑬𝑬0 × (𝜿𝜿� × 𝑬𝑬0
∗)] = ¼𝜀𝜀0𝜿𝜿� ∙ [(𝑬𝑬0 ∙ 𝑬𝑬0

∗)𝜿𝜿� − (𝑬𝑬0 ∙ 𝜿𝜿�)𝑬𝑬0
∗] = ¼𝜀𝜀0𝑬𝑬0 ∙ 𝑬𝑬0

∗. 

The 𝐸𝐸-field and 𝐻𝐻-field energy densities are thus seen to be identical. As for the time-
averaged Poynting vector, we will have 

 〈𝑺𝑺(𝒓𝒓, 𝑡𝑡)〉 = ½𝑅𝑅𝑅𝑅[𝑬𝑬(𝒓𝒓, 𝑡𝑡) × 𝑯𝑯∗(𝒓𝒓, 𝑡𝑡)] = ½𝑅𝑅𝑅𝑅�𝑬𝑬0𝑒𝑒i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔) × 𝑯𝑯0
∗𝑒𝑒−i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔)� 

𝑬𝑬0
′  

𝑬𝑬0
″ 

0 0 

0 
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 = ½𝑅𝑅𝑅𝑅[𝑬𝑬0 × (𝜿𝜿� × 𝑬𝑬0
∗ 𝑍𝑍0⁄ )] = (2𝑍𝑍0)−1𝑅𝑅𝑅𝑅[(𝑬𝑬0 ∙ 𝑬𝑬0

∗)𝜿𝜿� − (𝑬𝑬0 ∙ 𝜿𝜿�)𝑬𝑬0
∗] 

 = (2𝑍𝑍0)−1(𝑬𝑬0 ∙ 𝑬𝑬0
∗)𝜿𝜿�. 

Note that the magnitude of the time-averaged Poynting vector equals the sum of the 𝐸𝐸-field 
and 𝐻𝐻-field energy densities, namely, ½𝜀𝜀0𝑬𝑬0 ∙ 𝑬𝑬0

∗, multiplied by the speed 𝑐𝑐 of light in vacuum. 
This is the sense in which the Poynting vector yields the rate of flow of electromagnetic energy 
per unit area per unit time. 

f ) The time-averaged energy densities and the Poynting vector of a plane-wave are seen to be 
proportional to 𝑬𝑬0 ∙ 𝑬𝑬0

∗. Thus, the relevant entity for the superposition (𝛼𝛼𝑬𝑬01 + 𝛽𝛽𝑬𝑬02)𝑒𝑒i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔) is 

 (𝛼𝛼𝑬𝑬01 + 𝛽𝛽𝑬𝑬02) ∙ (𝛼𝛼𝑬𝑬01 + 𝛽𝛽𝑬𝑬02)∗ = |𝛼𝛼|2𝑬𝑬01 ∙ 𝑬𝑬01
∗ + |𝛽𝛽|2𝑬𝑬02 ∙ 𝑬𝑬02

∗ + 2𝑅𝑅𝑅𝑅(𝛼𝛼𝛽𝛽∗𝑬𝑬01 ∙ 𝑬𝑬02
∗ ). 

For the energy densities and the Poynting vector of the superposed plane-wave to be linear 
combinations of the corresponding entities for the constituent beams (for all values of 𝛼𝛼 and 𝛽𝛽), 
it is necessary as well as sufficient to have 𝑬𝑬01 ∙ 𝑬𝑬02

∗ = 0. This is equivalent 
to requiring that 𝑬𝑬01

′ ∙ 𝑬𝑬02
′ + 𝑬𝑬01

″ ∙ 𝑬𝑬02
″ = 0 and also 𝑬𝑬01

′ ∙ 𝑬𝑬02
″ − 𝑬𝑬01

″ ∙ 𝑬𝑬02
′ = 0. 

One way to achieve this, as the figure suggests, is by rotating 𝑬𝑬01
′  around 𝜿𝜿� 

by 90°, say, counterclockwise, to arrive at 𝑬𝑬02
′ , then rotating 𝑬𝑬01

″  around 𝜿𝜿� by 
90°, this time clockwise, to arrive at 𝑬𝑬02

″ . In this way, the orthogonality 
constraint 𝑬𝑬01 ∙ 𝑬𝑬02

∗ = 0 is satisfied and the two polarization states 𝑬𝑬01 and 
𝑬𝑬02 of the (𝜔𝜔,𝜿𝜿�) plane-wave become mutually orthogonal. 
 
  

𝑬𝑬01
′  

𝑬𝑬01
″  

𝑬𝑬02
′  

𝑬𝑬02
″  𝜿𝜿� ∙ 

0 
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Solution to Problem 2) 

a) |𝒌𝒌(i)| = (𝜔𝜔 𝑐𝑐⁄ )�𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎    →   𝒌𝒌(i) = (𝜔𝜔 𝑐𝑐⁄ )�𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎(sin𝜃𝜃 𝒙𝒙� − cos 𝜃𝜃 𝒛𝒛�). (1) 

 |𝒌𝒌(t)| = (𝜔𝜔 𝑐𝑐⁄ )�𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏    →   𝒌𝒌(t) = (𝜔𝜔 𝑐𝑐⁄ )�𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏(sin𝜃𝜃′ 𝒙𝒙� − cos𝜃𝜃′ 𝒛𝒛�). (2) 

b) Maxwell’s boundary conditions require that 𝑬𝑬∥,𝑯𝑯∥,𝑫𝑫⊥, and 𝑩𝑩⊥ be continuous at the interface. 
Each field has a phase-factor 𝑒𝑒i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔), which reduces to 𝑒𝑒i(𝑘𝑘𝑥𝑥𝑥𝑥+𝑘𝑘𝑦𝑦𝑦𝑦 − 𝜔𝜔𝜔𝜔) when the interfacial 
plane is chosen to be the 𝑥𝑥𝑥𝑥-plane at 𝑧𝑧 = 0. Since the continuity conditions pertain to the fields 
immediately above and immediately below the interface at all times 𝑡𝑡, the frequencies of the 
incident, reflected, and transmitted beams must be identical. In particular, the frequency of the 
transmitted beam must be the same as the frequency 𝜔𝜔 of the incident beam. 

Similarly, the continuity conditions are satisfied for all values of the coordinate 𝑦𝑦 at the 
interfacial plane if and only if the 𝑘𝑘𝑦𝑦 values of the incident, reflected, and transmitted beams are 
identical. Since our choice of 𝑥𝑥𝑥𝑥 as the plane of incidence automatically sets the 𝑘𝑘𝑦𝑦 component 
of 𝒌𝒌(i) to zero, we conclude that the 𝑘𝑘𝑦𝑦 components of 𝒌𝒌(r) and 𝒌𝒌(t) must be zero as well. 

Finally, the satisfaction of the boundary conditions for all values of the coordinate 𝑥𝑥 at the 
interfacial plane requires that the 𝑘𝑘𝑥𝑥 values of the incident, reflected, and transmitted beams be 
identical. In particular, setting 𝑘𝑘𝑥𝑥

(i) = 𝑘𝑘𝑥𝑥
(t), we find from Eqs.(1) and (2) that the angles 𝜃𝜃 and 𝜃𝜃′ 

must be related as follows: 

 (𝜔𝜔 𝑐𝑐⁄ )�𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎 sin𝜃𝜃 = (𝜔𝜔 𝑐𝑐⁄ )�𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏 sin𝜃𝜃′     →      sin𝜃𝜃′ = �(𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎) (𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏)⁄ sin𝜃𝜃. (3) 

c) From 𝜵𝜵 × 𝑬𝑬0𝑒𝑒i�𝒌𝒌 ∙ 𝒓𝒓 – 𝜔𝜔𝜔𝜔� = −(𝜕𝜕 𝜕𝜕𝜕𝜕⁄ ) �𝜇𝜇0𝜇𝜇(𝜔𝜔)𝑯𝑯0𝑒𝑒i�𝒌𝒌 ∙ 𝒓𝒓 – 𝜔𝜔𝜔𝜔�� we find 𝒌𝒌 × 𝑬𝑬0 = 𝜇𝜇0𝜇𝜇(𝜔𝜔)𝜔𝜔𝑯𝑯0, 

which leads to (𝜔𝜔 𝑐𝑐⁄ )�𝜇𝜇(𝜔𝜔)𝜀𝜀(𝜔𝜔)𝜿𝜿� × 𝑬𝑬0 = 𝜇𝜇0𝜇𝜇(𝜔𝜔)𝜔𝜔𝑯𝑯0 and, therefore, 𝑯𝑯0 = �𝜀𝜀 𝜇𝜇⁄ 𝜿𝜿� × 𝑬𝑬0 𝑍𝑍0� . 
For the incident plane-wave, this equation yields 

 𝑯𝑯0
(i) = �𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎⁄ 𝜿𝜿�(i) × 𝑬𝑬0

(i) 𝑍𝑍0�  

 = 𝑍𝑍0−1�𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎⁄ (sin𝜃𝜃 𝒙𝒙� − cos 𝜃𝜃 𝒛𝒛�) × �𝐸𝐸𝑝𝑝
(i) cos𝜃𝜃 𝒙𝒙� + 𝐸𝐸𝑠𝑠

(i)𝒚𝒚� + 𝐸𝐸𝑝𝑝
(i) sin𝜃𝜃 𝒛𝒛�� 

 = 𝑍𝑍0−1�𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎⁄ �𝐸𝐸𝑠𝑠
(i) cos 𝜃𝜃 𝒙𝒙� − 𝐸𝐸𝑝𝑝

(i)(sin2 𝜃𝜃 + cos2 𝜃𝜃)𝒚𝒚� + 𝐸𝐸𝑠𝑠
(i) sin𝜃𝜃 𝒛𝒛�� 

 = 𝑍𝑍0−1�𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎⁄ �𝐸𝐸𝑠𝑠
(i) cos 𝜃𝜃 𝒙𝒙� − 𝐸𝐸𝑝𝑝

(i)𝒚𝒚� + 𝐸𝐸𝑠𝑠
(i) sin𝜃𝜃 𝒛𝒛��. (4) 

Similarly, for the transmitted plane-wave, we will have 

 𝑯𝑯0
(t) = �𝜀𝜀𝑏𝑏 𝜇𝜇𝑏𝑏⁄ 𝜿𝜿�(t) × 𝑬𝑬0

(t) 𝑍𝑍0� = 𝑍𝑍0−1�𝜀𝜀𝑏𝑏 𝜇𝜇𝑏𝑏⁄ �𝐸𝐸𝑠𝑠
(t) cos𝜃𝜃′ 𝒙𝒙� − 𝐸𝐸𝑝𝑝

(t)𝒚𝒚� + 𝐸𝐸𝑠𝑠
(t) sin𝜃𝜃′ 𝒛𝒛��. (5) 

d) In the absence of a reflected beam, the continuity conditions for 𝑬𝑬∥ and 𝑯𝑯∥ of 𝑝𝑝-polarized 
light become 
 𝐸𝐸𝑥𝑥

(i) = 𝐸𝐸𝑥𝑥
(t)     →      𝐸𝐸𝑝𝑝

(i) cos 𝜃𝜃 = 𝐸𝐸𝑝𝑝
(t) cos 𝜃𝜃′. (6) 

 𝐻𝐻𝑦𝑦
(i) = 𝐻𝐻𝑦𝑦

(t)    →      �𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎⁄ 𝐸𝐸𝑝𝑝
(i) = �𝜀𝜀𝑏𝑏 𝜇𝜇𝑏𝑏⁄ 𝐸𝐸𝑝𝑝

(t). (7) 

Substituting for 𝐸𝐸𝑝𝑝
(t) from Eq.(7) into Eq.(6), and recalling the relation between 𝜃𝜃 and 𝜃𝜃′ as 

given by Eq.(3), we find 

See Eqs.(4) and (5) 
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 𝐸𝐸𝑝𝑝
(i)√1 − sin2 𝜃𝜃 = �𝜇𝜇𝑏𝑏𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎𝜀𝜀𝑏𝑏⁄ 𝐸𝐸𝑝𝑝

(i)√1 − sin2 𝜃𝜃′ 

 →   1 − sin2 𝜃𝜃 = (𝜇𝜇𝑏𝑏𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎𝜀𝜀𝑏𝑏⁄ )[1 − (𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎 𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏⁄ ) sin2 𝜃𝜃]     →    sin𝜃𝜃 = �1 − (𝜇𝜇𝑏𝑏𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎𝜀𝜀𝑏𝑏⁄ )
1 − (𝜀𝜀𝑎𝑎 𝜀𝜀𝑏𝑏⁄ )2  

. (8) 

If 𝜇𝜇𝑎𝑎 = 𝜇𝜇𝑏𝑏, we will have sin𝜃𝜃 = �𝜀𝜀𝑏𝑏 (𝜀𝜀𝑎𝑎 + 𝜀𝜀𝑏𝑏)⁄ , which leads to cos 𝜃𝜃 = �𝜀𝜀𝑎𝑎 (𝜀𝜀𝑎𝑎 + 𝜀𝜀𝑏𝑏)⁄  and 
tan𝜃𝜃 = �𝜀𝜀𝑏𝑏 𝜀𝜀𝑎𝑎⁄ . But this may also be written as tan𝜃𝜃 = �𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏 𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎⁄ = 𝑛𝑛𝑏𝑏 𝑛𝑛𝑎𝑎⁄ , which is the 
well-known result associated with 𝑝𝑝-light incidence at Brewster’s angle when 𝜇𝜇𝑎𝑎 = 𝜇𝜇𝑏𝑏. 

e) In the case of an 𝑠𝑠-polarized incident beam, the reflected beam vanishes when the following 
continuity conditions for 𝑬𝑬∥ and 𝑯𝑯∥ are satisfied: 

 𝐸𝐸𝑦𝑦
(i) = 𝐸𝐸𝑦𝑦

(t)    →     𝐸𝐸𝑠𝑠
(i) = 𝐸𝐸𝑠𝑠

(t). (9) 

 𝐻𝐻𝑥𝑥
(i) = 𝐻𝐻𝑥𝑥

(t)   →     �𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎⁄ 𝐸𝐸𝑠𝑠
(i) cos𝜃𝜃 = �𝜀𝜀𝑏𝑏 𝜇𝜇𝑏𝑏⁄ 𝐸𝐸𝑠𝑠

(t) cos 𝜃𝜃′. (10) 

Substituting for 𝐸𝐸𝑠𝑠
(t) from Eq.(9) into Eq.(10), and recalling the relation between 𝜃𝜃 and 𝜃𝜃′ as 

given by Eq.(3), we find 

 (𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎⁄ )(1− sin2 𝜃𝜃) = (𝜀𝜀𝑏𝑏 𝜇𝜇𝑏𝑏⁄ )(1 − sin2 𝜃𝜃′) 

 →   (𝜇𝜇𝑏𝑏𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎𝜀𝜀𝑏𝑏⁄ )(1 − sin2 𝜃𝜃) = 1 − (𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎 𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏⁄ ) sin2 𝜃𝜃    →    sin𝜃𝜃 = �𝜇𝜇𝑏𝑏(𝜇𝜇𝑎𝑎𝜀𝜀𝑏𝑏−𝜇𝜇𝑏𝑏𝜀𝜀𝑎𝑎)
(𝜇𝜇𝑎𝑎2  − 𝜇𝜇𝑏𝑏

2)𝜀𝜀𝑎𝑎
 
. (11) 

At optical frequencies, ordinary materials have 𝜇𝜇𝑎𝑎 = 𝜇𝜇𝑏𝑏 ≅ 1, which does not allow for the 
existence of a Brewster’s angle for 𝑠𝑠-polarized light. However, whenever 𝜇𝜇𝑎𝑎 ≠ 𝜇𝜇𝑏𝑏, if Eq.(11) 
yields an acceptable value for the angle 𝜃𝜃 (i.e., an angle in the range of 0° to 90°), then such a 
Brewster angle for 𝑠𝑠-light would exist. If it so happens that 𝜀𝜀𝑎𝑎 = 𝜀𝜀𝑏𝑏 while 𝜇𝜇𝑎𝑎 ≠ 𝜇𝜇𝑏𝑏, we will have 
sin𝜃𝜃 = �𝜇𝜇𝑏𝑏 (𝜇𝜇𝑎𝑎 + 𝜇𝜇𝑏𝑏)⁄ , which leads to cos 𝜃𝜃 = �𝜇𝜇𝑎𝑎 (𝜇𝜇𝑎𝑎 + 𝜇𝜇𝑏𝑏)⁄  and tan 𝜃𝜃 = �𝜇𝜇𝑏𝑏 𝜇𝜇𝑎𝑎⁄ . Once again, 
this may be written as tan𝜃𝜃 = �𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏 𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎⁄ = 𝑛𝑛𝑏𝑏 𝑛𝑛𝑎𝑎⁄ , as was the case for 𝑝𝑝-polarized light. 
 

See Eqs.(4) and (5) 
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