PhD Qualifying Exam, Summer 2023

Opti 501, Day 2

System of units: SI (or MKSA)

a) For an electromagnetic plane-wave residing inside a linear, isotropic, and homogeneous medium, write a (generally complex) pair of expressions for the electric field E(r,t) and the magnetic field H(r,t) in terms of E_0, H_0, k , and ω .

- b) Assuming that $\rho_{\text{free}}(\mathbf{r}, t) = 0$ and $\mathbf{J}_{\text{free}}(\mathbf{r}, t) = 0$, write all four equations of Maxwell for the *E*-field and *H*-field of the plane-wave, keeping in mind that the remaining sources within the medium should be expressed as $\mathbf{P}(\mathbf{r}, t) = \varepsilon_0 \chi_e(\omega) \mathbf{E}(\mathbf{r}, t)$ and $\mathbf{M}(\mathbf{r}, t) = \mu_0 \chi_m(\omega) \mathbf{H}(\mathbf{r}, t)$. Simplify these equations by eliminating the $\nabla \cdot$, $\nabla \times$, $\partial/\partial t$ operators and using the material medium's (relative) permittivity $\varepsilon(\omega) = 1 + \chi_e(\omega)$ and permeability $\mu(\omega) = 1 + \chi_m(\omega)$.
- c) Use Maxwell's 1st equation obtained in part (b) to express E_{0z} in terms of E_{0x} , E_{0y} , k_x , k_y , k_z .
- d) Derive the dispersion relation $\mathbf{k} \cdot \mathbf{k} = (\omega/c)^2 \mu(\omega)\varepsilon(\omega)$ from the Maxwell equations obtained in part (b). How is the material medium's (complex) refractive index $n(\omega)$ related to its (relative) permittivity $\varepsilon(\omega)$ and (relative) permeability $\mu(\omega)$?

Hint: The vector identity $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$ should be helpful.