PhD Qualifying Exam, Fall 2022

Opti 501

System of units: SI (or MKSA)

1) An electromagnetic plane-wave of frequency ω propagates along the unit-vector $\hat{\mathbf{k}}$ in free space. The plane-wave's *E*-field is specified as $\mathbf{E}(\mathbf{r},t) = \mathbf{E}_0 \exp[i(\mathbf{k} \cdot \mathbf{r} - \omega t)]$. Assume that the *k*-vector is real-valued (i.e., $\hat{\mathbf{k}}$ is real), but that the field amplitude \mathbf{E}_0 is complex; that is, $\mathbf{E}_0 = \mathbf{E}'_0 + i\mathbf{E}''_0$, where \mathbf{E}'_0 and \mathbf{E}''_0 are a pair of real-valued (but otherwise arbitrary) vectors.

- 1 pt a) Write the expression that relates \mathbf{k} to ω , c (the speed of light in vacuum), and $\hat{\mathbf{k}}$.
- 1 pt b) Invoke Maxwell's first equation, $\nabla \cdot D = \rho_{\text{free}}$, to show that $\hat{\kappa} \cdot E_0 = 0$. Explain why this relation implies that both E'_0 and E''_0 are perpendicular to the unit-vector $\hat{\kappa}$.
- 2 pts c) Explain how an arbitrary pair of E'_0 and E''_0 could give rise to an elliptical state of polarization of the plane-wave. Under what circumstances will the plane-wave be linearly polarized? Under what circumstances will the plane-wave be right (or left) circularly polarized?
- 2 pts d) Use Maxwell's third equation, $\nabla \times E = -\partial B/\partial t$, to find an expression for the plane-wave's *H*-field in terms of ω , $\hat{\kappa}$, E_0 , and the impedance Z_0 of free space.
- 2 pts e) Derive expressions for the time-averaged *E*-field energy-density $\langle \mathcal{E}_E(\mathbf{r}, t) \rangle$, time-averaged *H*-field energy-density $\langle \mathcal{E}_H(\mathbf{r}, t) \rangle$, and time-averaged Poynting vector $\langle \mathbf{S}(\mathbf{r}, t) \rangle$ in terms of the parameters $\mathcal{E}_0, \mu_0, \hat{\mathbf{k}}, \mathbf{E}'_0, \mathbf{E}''_0$. (Recall that $\mathcal{E}_E, \mathcal{E}_H$, and **S** must be real-valued.)
- 2 pts f) Consider the linear superposition of two plane-waves of the same frequency ω , propagating in the same direction $\hat{\kappa}$, but having different polarization states E_{01} and E_{02} . Using an arbitrary pair of complex coefficients (α, β), the superposed *E*-field may be written as

$$\boldsymbol{E}(\boldsymbol{r},t) = (\alpha \boldsymbol{E}_{01} + \beta \boldsymbol{E}_{02}) e^{i(\boldsymbol{k}\cdot\boldsymbol{r} - \omega t)}$$

The two polarization states are said to be mutually orthogonal if, for all values of α and β , the energy-density of the superposition equals the corresponding linear combination of the individual energy densities of the two plane-waves. (This property also extends to the Poynting vector.) Under what circumstances can E_{01} and E_{02} be considered to be mutually orthogonal?

Hint:	$\sin(2x) = 2\sin x \cos x;$	$\cos(2x) = \cos^2 x - \sin^2 x;$	$\sin^2 x = \frac{1}{2}(1 - \cos 2x);$
	$\cos^2 x = \frac{1}{2}(1 + \cos 2x);$	$a \cdot (b \times c) = b \cdot (c \times a) = c \cdot (a \times b);$	$\boldsymbol{a} \times (\boldsymbol{b} \times \boldsymbol{c}) = (\boldsymbol{a} \cdot \boldsymbol{c})\boldsymbol{b} - (\boldsymbol{a} \cdot \boldsymbol{b})\boldsymbol{c}.$

PhD Qualifying Exam, Fall 2022 Opti 501

System of units: SI (or MKSA)

2) Consider the flat interface between two linear, isotropic, homogeneous media specified by their relative permeability and permittivity at the incidence frequency, namely, (μ_a, ε_a) for the medium above, and (μ_b, ε_b) for the medium below the interface. These material parameters (i.e., $\mu_a, \mu_b, \varepsilon_a, \varepsilon_b$) are assumed to be real-valued and positive. A homogeneous plane-wave of frequency ω arrives at the interfacial *xy*-plane; the plane of incidence is *xz*, the incidence angle is θ , and the *E*-field components of the incident beam are $E_p^{(i)}$ and $E_s^{(i)}$, as indicated in the figure. The *E*-field components of the transmitted beam, also a homogeneous plane-wave, are $E_p^{(t)}$ and $E_s^{(t)}$, and the angle between the transmitted *k*-vector and the surface-normal is θ' , as shown.

- 2 pts a) Invoking the dispersion relation $\mathbf{k} \cdot \mathbf{k} = (\omega/c)^2 \mu(\omega) \varepsilon(\omega)$, write expressions for the *k*-vectors of the incident and transmitted plane-waves shown in the above figure. ($c = 1/\sqrt{\mu_0 \varepsilon_0}$ is the speed of light in vacuum.)
- 2 pts b) Invoking Maxwell's boundary conditions, explain why the transmitted wave has the same frequency ω as the incident wave. What do these boundary conditions reveal about the relation between θ and θ' ?
- 2 pts c) Use Maxwell's third equation, $\nabla \times E = -\partial B/\partial t$, to determine both the incident and the transmitted *H*-field components. (As usual, $B = \mu_0 \mu(\omega) H$; you may use the impedance of free space, $Z_0 = \sqrt{\mu_0/\varepsilon_0}$, to simplify the equations.)
- 2 pts d) Find the conditions under which the reflected beam for the *p*-polarized incident light vanishes.
- 2 pts e) Find the conditions under which the reflected beam for the *s*-polarized incident light vanishes.