PhD Qualifying Exam, Fall 2022

Opti 501

System of units: SI (or MKSA)

1) An electromagnetic plane-wave of frequency ω propagates along the unit-vector $\widehat{\boldsymbol{\kappa}}$ in free space. The plane-wave's E-field is specified as $\boldsymbol{E}(\boldsymbol{r}, t)=\boldsymbol{E}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]$. Assume that the \boldsymbol{k}-vector is real-valued (i.e., $\widehat{\boldsymbol{\kappa}}$ is real), but that the field amplitude \boldsymbol{E}_{0} is complex; that is, $\boldsymbol{E}_{0}=\boldsymbol{E}_{0}^{\prime}+\mathrm{i} \boldsymbol{E}_{0}^{\prime \prime}$, where $\boldsymbol{E}_{0}^{\prime}$ and $\boldsymbol{E}_{0}^{\prime \prime}$ are a pair of real-valued (but otherwise arbitrary) vectors.
1 pt a) Write the expression that relates \boldsymbol{k} to ω, c (the speed of light in vacuum), and $\widehat{\boldsymbol{\kappa}}$.
1 pt b) Invoke Maxwell's first equation, $\boldsymbol{\nabla} \cdot \boldsymbol{D}=\rho_{\text {free }}$, to show that $\widehat{\boldsymbol{\kappa}} \cdot \boldsymbol{E}_{0}=0$. Explain why this relation implies that both $\boldsymbol{E}_{0}^{\prime}$ and $\boldsymbol{E}_{0}^{\prime \prime}$ are perpendicular to the unit-vector $\widehat{\boldsymbol{\kappa}}$.
c) Explain how an arbitrary pair of $\boldsymbol{E}_{0}^{\prime}$ and $\boldsymbol{E}_{0}^{\prime \prime}$ could give rise to an elliptical state of polarization of the plane-wave. Under what circumstances will the plane-wave be linearly polarized? Under what circumstances will the plane-wave be right (or left) circularly polarized?
2 pts d) Use Maxwell's third equation, $\boldsymbol{\nabla} \times \boldsymbol{E}=-\partial \boldsymbol{B} / \partial t$, to find an expression for the plane-wave's H-field in terms of $\omega, \widehat{\boldsymbol{\kappa}}, \boldsymbol{E}_{0}$, and the impedance Z_{0} of free space.
e) Derive expressions for the time-averaged E-field energy-density $\left\langle\mathcal{E}_{E}(\boldsymbol{r}, t)\right\rangle$, time-averaged H field energy-density $\left\langle\mathcal{E}_{H}(\boldsymbol{r}, t)\right\rangle$, and time-averaged Poynting vector $\langle\boldsymbol{S}(\boldsymbol{r}, t)\rangle$ in terms of the parameters $\varepsilon_{0}, \mu_{0}, \widehat{\boldsymbol{\kappa}}, \boldsymbol{E}_{0}^{\prime}, \boldsymbol{E}_{0}^{\prime \prime}$. (Recall that $\mathcal{E}_{E}, \mathcal{E}_{H}$, and \boldsymbol{S} must be real-valued.)
2 pts
f) Consider the linear superposition of two plane-waves of the same frequency ω, propagating in the same direction $\widehat{\boldsymbol{\kappa}}$, but having different polarization states \boldsymbol{E}_{01} and \boldsymbol{E}_{02}. Using an arbitrary pair of complex coefficients (α, β), the superposed E-field may be written as

$$
\boldsymbol{E}(\boldsymbol{r}, t)=\left(\alpha \boldsymbol{E}_{01}+\beta \boldsymbol{E}_{02}\right) e^{\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)}
$$

The two polarization states are said to be mutually orthogonal if, for all values of α and β, the energy-density of the superposition equals the corresponding linear combination of the individual energy densities of the two plane-waves. (This property also extends to the Poynting vector.) Under what circumstances can \boldsymbol{E}_{01} and \boldsymbol{E}_{02} be considered to be mutually orthogonal?

$$
\begin{array}{lccc}
\text { Hint: } & \sin (2 x)=2 \sin x \cos x ; & \cos (2 x)=\cos ^{2} x-\sin ^{2} x ; & \sin ^{2} x=1 / 2(1-\cos 2 x) ; \\
& \cos ^{2} x=1 / 2(1+\cos 2 x) ; & \boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})=\boldsymbol{b} \cdot(\boldsymbol{c} \times \boldsymbol{a})=\boldsymbol{c} \cdot(\boldsymbol{a} \times \boldsymbol{b}) ; & \boldsymbol{a} \times(\boldsymbol{b} \times \boldsymbol{c})=(\boldsymbol{a} \cdot \boldsymbol{c}) \boldsymbol{b}-(\boldsymbol{a} \cdot \boldsymbol{b}) \boldsymbol{c} .
\end{array}
$$

PhD Qualifying Exam, Fall 2022

Opti 501

System of units: SI (or MKSA)

2) Consider the flat interface between two linear, isotropic, homogeneous media specified by their relative permeability and permittivity at the incidence frequency, namely, (μ_{a}, ε_{a}) for the medium above, and $\left(\mu_{b}, \varepsilon_{b}\right)$ for the medium below the interface. These material parameters (i.e., $\mu_{a}, \mu_{b}, \varepsilon_{a}, \varepsilon_{b}$) are assumed to be real-valued and positive. A homogeneous plane-wave of frequency ω arrives at the interfacial $x y$-plane; the plane of incidence is $x z$, the incidence angle is θ, and the E-field components of the incident beam are $\boldsymbol{E}_{p}^{(\mathrm{i})}$ and $\boldsymbol{E}_{s}^{(\mathrm{i})}$, as indicated in the figure. The E-field components of the transmitted beam, also a homogeneous plane-wave, are $\boldsymbol{E}_{p}^{(\mathrm{t})}$ and $\boldsymbol{E}_{s}^{(\mathrm{t})}$, and the angle between the transmitted k-vector and the surface-normal is θ^{\prime}, as shown.

2 pts a) Invoking the dispersion relation $\boldsymbol{k} \cdot \boldsymbol{k}=(\omega / c)^{2} \mu(\omega) \varepsilon(\omega)$, write expressions for the k-vectors of the incident and transmitted plane-waves shown in the above figure. $\left(c=1 / \sqrt{\mu_{0} \varepsilon_{0}}\right.$ is the speed of light in vacuum.)
b) Invoking Maxwell's boundary conditions, explain why the transmitted wave has the same frequency ω as the incident wave. What do these boundary conditions reveal about the relation between θ and θ^{\prime} ?

2 pts c) Use Maxwell's third equation, $\boldsymbol{\nabla} \times \boldsymbol{E}=-\partial \boldsymbol{B} / \partial t$, to determine both the incident and the transmitted H-field components. (As usual, $\boldsymbol{B}=\mu_{0} \mu(\omega) \boldsymbol{H}$; you may use the impedance of free space, $Z_{0}=\sqrt{\mu_{0} / \varepsilon_{0}}$, to simplify the equations.)
2 pts d) Find the conditions under which the reflected beam for the p-polarized incident light vanishes.
e) Find the conditions under which the reflected beam for the s-polarized incident light vanishes.

